

PROBAN

19-24 JUNE 2022

数ないたいと

PRECISION RF MICROWAVE/MILLIMETER WAVE APPLICATIONS

18 GHz to 110 GHz • PRECISION & PERFORMANCE • BOARD LAUNCH, DESIGN SERVICES

PUSH-ON		
Cable-to-Board	Board-to-Board	

Quick Attach, Blind Mate

THREADED

Cable-to-Board

Robust, Superior Repeatability

GANGED

Cable-to-Board

d Board-to-Board

Quick Attach, High Density

VISIT US IN BOOTH 5074 For more information visit samtec.com/PrecisionRF

MICROWAVE WEEK

IS ALL ABOUT CONNECTIONS...

From social media to downloading papers in real time we've got you covered! JOIN THE CONVERSATION:

Make sure you're engaging with IMS2022 on our social channels:

Follow us on Twitter: http://twitter.com/MTT_IMS

y

in

Follow us on Instagram: http://instagram.com/mtt_ims

- Like us on Facebook: http://www.facebook.com/IEEE.MTTS.IMS
- Engage with fellow attendees on LinkedIn: https://www.linkedin.com/groups/2375668/ (Group Name: IEEE MTT-S International Microwave Symposium (IMS))
- in https://www.linkedin.com/company/ieee-mtt-sinternational-microwave-symposium-ims/?viewAsMember=true

You Tube Follow us on YouTube: http://www.youtube.com/user/mttims

Don't forget to use the official IMS hashtag: #IMS2022

For the most up to date information visit: ims-ieee.org/mobile-apps-and-social-media

IMS MICROWAVE WEEK:

There's an app for that! Download papers in real time!

The IMS Microwave Week app is now available in the Apple App Store and Google Play store. Install the app on your Android or iOS device to view the full schedule of Workshops; Technical Lectures; IMS, Social Networking Feature that let's RFIC, and ARFTG Technical Sessions: Panel Sessions: Social Events; and Exhibition Information. You will be able to download the technical content that you registered

for, e.g., IMS and/or RFIC papers, workshop notes; as well as locate exhibitors and explore everything that the show has to offer! The app now includes an opt-in you search for fellow attendees who opted-in to be contacted for networking. Download the app today!

> For assistance, please email: support@mtt.org

To download the app, search for 'IMS Microwave Week' on the app store for your device or scan a QR code below.

Google d

Wireless is available throughout the Colorado **Convention Center!** SSID: IMS2022 Password: Denver22

IMS2022 Table of Contents

IMS2022 Chairs' Welcome
Coffee Break Times and Exhibition Hours
Welcome to Denver
IMS2022 Steering Committee
Technical Paper Review Committee
Getting Around the Colorado Convention Center

Sunday

Workshops					 8 - 11
Quantum Week Overview.					 11
Quantum Boot Camp					 11
RFIC Technical Lecture					 12
RFIC Plenary Session					 12
RFIC Reception and Sympo	siun	n Sh	OWCa	ase	 13

Мо

day	1
RFIC Technical Sessions	
Workshops	
RF Boot Camp	
IEEE Fellows	
Technical Lecture	
RFIC Panel Session	
Three Minute Thesis Competition	
IMS Industry Showcase	
IMS Plenary Session	
IMS Welcome Reception	

Tuesday

RFIC Technical Sessions 28, 37, 41 The Systems Forum 29 IMS Technical Sessions 30-33, 36, 40-41 RFIC Student Forums 31 Young Professionals Events 33 Industry Workshops 34 Student Design Competitions 34 IMS Panel Session 35 IMS/RFIC Joint Panel Session 35 Connected Future Summit 35 Systems Demo Zone: NIST Atomic Clock. 37 HAM Radio Transmitter Hunt and Social 37	
MicroApps	
IMS Interactive Forum Session & Quantum Day Reception	

Wednesday

IMS Technical Sessions	
Women in Microwaves	
Industry Workshops	
IMS Panel Sessions	
IMS Industry Paper Hardware Demonstrations	
IMS Interactive Forum Session & Radar/Aerospace Day Reception 51	
MicroApps	
MTT-S Awards Banquet	
Advanced Practice and Industry Paper Competitions	

Thursday

IMS Technical Sessions. MicroApps 99th ARFTG NVNA Users' Forum 99th ARFTG On-Wafer Users' Forum	
IMS Panel Sessions	64
Technical Lecture	64
IMS Interactive Forum Session & Phased Arrays and OTA	Reception 65
Industry Paper Hardware Demos	65 65
IMS Closing Session	67

Friday

99th ARFTG 68-69	
Exhibitor Index	
IMS2023	

28

42

56

1

WELCOME TO IMS2022! RON GINLEY, IMS2022 GENERAL CHAIR

Welcome to IMS2022 in Denver, Colorado. We are very excited about IMS coming to Denver and have planned a great event for you. We are planning an in-person event, a robust technical program, great social opportunities, and Denver is a wonderful place to visit. Several new innovations have been put into place that will make IMS2022 more informative and valuable for everyone. IMS2022 will be a great chance to re-establish connections and make new ones. Come explore the peaks of microwave engineering!

Downtown Denver is a vibrant community. The main hotels are less than six blocks from the Colorado Convention Center. There is a great mix of shops, restaurants and entertainment venues in the area near the Convention Center. Denver is known for having great weather—over 300 days of sunshine a year, and the Rocky Mountains are a short drive away.

The Systems Forum will be new in 2022. This will be a three-day forum that will bring together the latest in telecommunications, radar and space applications. There will be contributions from MTT-S Sister Societies, RFIC and ARFTG. There will be a theme to each main day of IMS. Tuesday is the Connected Future Summit (think 5G, 6G, ...) and Quantum Systems Day. Wednesday is Radar and Aerospace Day. Thursday is Phased Arrays and OTA Applications Day. During these days, look for additional Panel Sessions, more Focus Sessions, Technical Lectures, and Socials!

We are also working to increase industry participation in IMS. There will be opportunities for industry-based authors to showcase their work. There will also be opportunities for industry-based authors to mention companies supporting their work and show the company's booth number if they are exhibiting. The trade show will be a great way to connect with suppliers and attendees alike. There are more than 440 companies exhibiting!

We are excited about being live and in-person in Denver. This will be a great opportunity for the microwave community to come together once again. This is also a great opportunity to showcase your work and learn about new technologies. We really look forward to seeing you in Denver in June 2022.

Ron Ginley IMS2022 General Chair

Coffee Breaks

Sunday	AM-09:40-10:10	Grand Concourse
_	PM-15:10-15:40	Grand Concourse
Monday	AM-09:40-10:10	Grand Concourse
	PM-15:10-15:40	Grand Concourse
Tuesday	AM-09:40-10:10	IMS Show Floor
	PM-15:10-15:40	IMS Show Floor
Wednesday	AM-09:40-10:10	IMS Show Floor
	PM-15:10-15:40	IMS Show Floor
Thursday	AM-09:40-10:10	IMS Show Floor
	PM-15:10-15:40	Grand Concourse

EXHIBITION HOURS

Tuesday, 21 June 2022	09:30-17:00
Wednesday, 22 June 2022	09:30-18:00
Thursday, 23 June 2022	09:30-15:00

elcome to Denver, where 300 days of sunshine, a thriving cultural scene, diverse neighborhoods, and natural beauty combine for the world's most spectacular playground. A young, active city at the base of the Colorado Rocky Mountains, Denver's stunning architecture, award-winning dining and unparalleled views are all here, year-round.

Local boosters named the frontier mining camp on the South Platte River "Denver" after Kansas Territorial Governor James Denver in hopes of gaining political favor. Unfortunately, Denver had retired by the time they named the town. There were originally three separate towns, with three separate names, where Denver now stands. In 1859, the other names were dropped in return for a barrel of whiskey to be shared by all. Fittingly enough, the first permanent structure in Denver was a saloon.

By an amazing stroke of good luck, the 13th step on the west side of the Colorado State Capitol Building is exactly 5,280 feet above sea level—one mile high. In Denver's rarified air, golf balls go 10 percent farther. So do cocktails. Alcoholic drinks pack more of a punch than at sea level. The Mile High City is also extremely dry, so it is a good idea to drink more water than usual. With less water vapor in the air at this altitude, the sky really is bluer in Colorado.

Denver is near the mountains, not in them. The Mile High City is located on high rolling plains, 12 miles east of the "foothills," a series of gentle mountains that climb to 11,000 feet. Just beyond is the "Front Range of the Rocky Mountains," a series of formidable snowcapped peaks that rise to 14,000 feet. Denver might not be in the mountains, but the mountains still dominate the city. The picturesque mountain panorama from Denver is 140 miles long. There are 200 visible named peaks including 32 that soar to 13,000 feet and above.

To plan your time in Denver and Colorado visit the ims-ieee.org.

High Altitude Tips!

Denver Really Is Exactly One Mile High

Denver really is a mile high, but most people don't even notice the altitude difference. The air is just thinner and dryer. In fact, many people with respiratory problems move to Denver for the benefits of the dry air. Follow these tips to stay happy and healthy.

Drink Water

Before your trip to Denver, and while you are here, drinking plenty of water is the number one way to help your body adjust easily to our higher altitude. The low humidity in Colorado keeps the air dry, like the desert, so you need about twice as much water here as you would drink at home.

Monitor Your Alcohol Intake

In Denver's rarified air, golf balls go ten percent farther... and so do cocktails. Alcoholic drinks pack more of a wallop than at sea level. It is recommended that you go easy on the alcohol in the mountains and in Denver, as its effects will feel stronger here.

Eat Foods High In Potassium

Foods such as broccoli, bananas, avocado, cantaloupe, celery, greens, bran, chocolate, granola, dates, dried fruit, potatoes and tomatoes will help you replenish electrolytes by balancing salt intake.

Watch Your Physical Activity

The effects of exercise are more intense here. If you normally run 10 miles a day at home, you might try 6 miles in Denver.

Pack For Sun

With less water vapor in the air at this

altitude, the sky really is bluer in Colorado. But there's 25 percent less protection from the sun, so sunscreen is a must. Denver receives more than 300 days of sunshine each year (more than San Diego or Miami). Bring sunglasses, sunscreen, lip balm... even in winter.

Dress In Layers

Two days before your trip to Denver, check the weather and use this information to pack appropriately. Because the sun is especially powerful in Denver, it can feel much warmer than the actual temperature during the daytime, but then become very chilly after sundown, particularly in the Spring and Fall. It is best to layer your clothing.

Enjoy Yourself!

IMS2022 STEERING COMMITTEE

EXECUTIVE COMMITTEE

Ronald Ginley, General Chair Kate Remley, TPC Chair Dylan Williams. TPC Chair Leonard Hayden, MP3 Chair Kenneth Mays, MP3 Chair Kenneth Kahn, LAOC Chair Rashaunda Henderson, Finance Chair Jon Martens, Finance Chair David Zavac, Participant Experience Chair Osama Shana'a, RFIC Conference General Chair Jeffrey Jargon, ARFTG Conference General Chair Elsie Vega, Conference/Event Manager Robert Alongi, Treasurer Amanda Scacchitti, Publications Manager Carl Sheffres, Group Director Janine Love, Exhibition Director Ivar Bazzy, Exhibition Management JK McKinney, Advisor/Virtual Conference Components

SENIOR ADVISORS AND AUXILIARY CONFERENCE CHAIRS/LIAISONS

JK McKinney, IMSEC Chair Wayne Shiroma, IMS Past Chair (2017) Sridhar Kanamuluru, IMS Past Chair (2018) Larry Kushner, IMS Past Chair (2019) Mark Gouker, IMS Past Chair (2019) Tim Lee, IMS Past Chair (2020) Steven Kenney, IMS Past Chair (2021) John Papapolymerou, IMS Past Chair (2021) John Wood, IMS2023 Co-Chair Gayle Collins, IMS2023 Co-Chair Scott Barker, IMS2024 Co-Chair Sanjay Raman, IMS2024 Co-Chair JK McKinney, Marketing Advisor JK McKinney, Virtual Conference Components Nick Ridler, EuMW Liason

TECHNICAL PROGRAM COMMITTEE

Kate Remley, TPC Chair Dylan Williams, TPC Chair Peter Aaen, Plenary Session Chair Zoya Popovic, Plenary Session Co-Chair

MP3 (MARKETING/PUBLICITY/PROMOTION/ PUBLICATIONS)

Leonard Hayden, MP3 Chair Kenneth Mays, MP3 Chair Carl Sheffres, Marketing Strategy JK McKinney, IMSEC Marketing Strategy Liaison Amanda Scacchitti, Publications Staff Karleen Mays, Website Editor Vikas Shilimkar, Electronic Media (Website, Social Media, Mobile App) Mark Slater, Website/Mobile App Professional Staff

Tommaso Cappello, TMTT Special Issue Guest Editor Mitch Wallis, Microwave Magazine Guest Editor

LAOC (LOCAL ARRANGEMENTS/ OPERATIONS COMMITTEE)

Kenneth Kahn, LAOC Chair Elsie Vega, Conference/Event Manager Erin Dolan, Conference Planner Dillian Waldron, Conference Planner Robert Alongi, Treasurer Zaher Bardai, Visa Support Susie Horn, Visa Support William Neill Kefauver, Student Volunteer Coordination Chair Kenneth Kahn, Guest Lounge and Programs Gabrielle Sander, Guest Lounge and Programs Karleen Mays, Guest Lounge and Programs Ronald Ginley, Protocol/Gifts Elsie Vega, Protocol/Gifts

FOCUS GROUPS

Kenneth Kahn, Focus Groups Co-Chair Ronald Ginley, Focus Groups Co-Chair Sara Barros, Young Professionals Chair Casey Latham, Young Professionals Co-Chair Laila Marzall, Women in Microwaves Chair Megan Robinson, Women in Microwaves Amy Robinson, Women in Microwaves Paige Danielson, Women in Microwaves Kaitlin Hall, Women in Microwaves Jooeun Le, Women in Microwaves Georgia Sadridge, Women in Microwaves Sofia Mvokany, Women in Microwaves Zoya Popovic, Women in Microwaves Rhonda Franklin, Project Connect Netra Pillay, Project Connect Tom Weller, Project Connect Himanshu Aggrawal, Project Connect Richard Campbell, Amateur Radio Chair

ELECTRONIC PAPER MANAGEMENT

Sandy Owens, Electronic Paper Mgmt

WORKSHOPS

Zoya Popovic, Workshops & Short Courses Chair Michael Roberg, Workshops & Short Courses Co-Chair Scott Schafer, Workshops & Short Courses Co-Chair Patrick Roblin, ARFTG Workshop Liaison Moyhee Mikhemar, RFIC Workshop Liaison

RF BOOT CAMP

Larry Dunleavy, *RF Boot Camp Chair* Joanne Mistler, *RF Boot Camp Co-Chair* David Ricketts, *RF Boot Camp Co-Chair*

TECHNICAL LECTURES

José Carlos Pedro, Technical Lectures Chair

PANEL SESSIONS

Jasmin Grosinger, Panel Sessions Chair Alan Brannon, Panel Sessions Co-Chair

FOCUS/SPECIAL SESSIONS

Alan Brannon, Focus/Special Sessions Chair Ari Feldman, Focus/Special Sessions Co-Chair

INTERACTIVE FORUM

Rob Horansky, Interactive Forum Co-Chair Justus Brevik, Interactive Forum Vice Co-Chair Akim Babenko, Interactive Forum Co-Chair Tom McKay, Demonstrations During Interactive Forum

SPECIAL PROGRAMS

Kate Remley, Special Programs (Systems Forum) Dylan Williams, Special Programs (Systems Forum)

STUDENT PAPER COMPETITION

Gregor Lasser, Student Paper Competition Chair Charles Dietlein, Student Paper Competition Co-Chair Payam Nayeri, Student Paper Competition Co-Chair

STUDENT DESIGN COMPETITIONS

Jan Verspecht, Student Design Competition Chair Taylor Barton, Student Design Competition Co-Chair

ADVANCED PRACTICE/INDUSTRY PAPER COMPETITION

Jay Banwait, Industry/Advanced-Practice Paper Competitions Chair Jim Sowers, Industry/Advanced-Practice Paper Competitions Co-Chair

THREE-MINUTE THESIS

Aline Eid, *Co-chair* Jimmy Hester, *Co-chair* Erin Kiley, *Member* Daniel Tajik, *Member* John Bandler, *Senior Advisor*

MICROAPPS

Michael Trippe, *MicroApps Chair* Dennis Lewis, *MicroApps* Janet O'Neil, *MicroApps*

INDUSTRY INITIATIVES

Damir Senic, Industry Initiatives/Showcase Chair Roy Sun, Industry Initiatives/Showcase Co-Chair Tom McKay, Industry Initiatives/Showcase Co-Chair

INDUSTRY WORKSHOPS

Janet O'Neil, Industry Workshops Chair Dennis Lewis, Industry Workshops

EXHIBITION MANAGEMENT

Carl Sheffres, Group Director Janine Love, Exhibition Director Ivar Bazzy, Corporate Management Steve Reising, Univ. Exhibits/Liaison Steven Stitzer, Historical Exhibit

IMS2022 TECHNICAL PAPER REVIEW COMMITTEE

Alessandro Galli Jan Machac David Jackson Francisco Mesa **Costas Sarris Constantine Sideris** José Ravas-Sanchez Marco Pirola John Bandler Zhizhang David Chen Erin Kiley Michel Nakhla Werner Thiel Jon Martens Marcus Dasilva **Ricardo Figueiredo** Gian Piero Gibiino Isar Mostafanezhad **Tibault Reveyrand** Jonas Urbonas Loren Betts Qi-jun Zhang Douglas Teeter **Rob Jones** Slawomir Koziel Antonio Raffo Shahed Reza José Pedro Almudena Suarez Fabrizio Bonani Dan liao Roni Khazaka Christopher Silva Katia Grenier Ilona Rolfes Malgorzata Celuch Pawel Kopyt Joachim Oberhammer Arnaud Pothier Chung-Tse Michael Wu Maurizio Bozzi Tzyh-Ghuang Ma Jun Choi **Christian Damm** George Eleftheriades Debapratim Ghosh Jay McDaniel G. Shrikanth Reddy Jason Soric Ke Wu Holger Maune Bayaner Arigong Shuhei Amakawa Wenguan Che Wai Yin Mung Srinivas Prasad Mysore Nagaraja Ki Shin Hualiang Zhang Dimitra Psychogiou Christopher Galbraith Pei-Ling Chi James Hwang Juseop Lee Giuseppe Macchiarella Cristiano Tomassoni Simone Bastioli Vicente Boria-Esbert

Antonio Morini **Richard Snyder** Ming Yu Dimitrios Peroulis Hjalti Sigmarsson Roberto Gomez-Garcia Xun Gong Julien Lintignat Raafat Mansour Eric Naglich Tao Yang Lava Mohammadi Songbin Gong Amelie Hagelauer **Pierre Blondy** John Ebel Brice Ivira Amir Mortazawi Tejinder Singh Steven Stitzer Guoan Wang Robert Weigel Prem Chahal Valentina Palazzi **Dominique Baillargeat** Georgios Dogiamis Neelam Prabhu Gaunkar Florian Herrault Robert Jackson **Telesphor Kamgaing** Kamal Samanta Manos Tentzeris Rhonda Franklin Patrick Fav Julio Costa Tony Ivanov Nicholas Kolias Peter Magnee Spyridon Pavlidis Luciano Boglione Pekka Kangaslahti Roee Ben-Yishay Chinchun Meng Shirin Montazeri Edward Niehenke Zhe Song Deukhyoun Heo Bert Henderson Hong-Yeh Chang Austin Chen Emery Chen Amit Jha John Kuno Stephen Maas Hiroshi Okazaki Jahnavi Sharma **Christian Carlowitz** Hermann Boss Edward Gebara Koichi Murata Srinivasan Gopal Ankur Guha Roy Taylor Barton Michael Roberg Kenle Chen Wenhua Chen Gayle Collins Sagar Dhar

Damon Holmes Hussain Ladhani Chenyu Liang Haifeng Lyu Tushar Sharma Yulong Zhao Xinyu Zhou Nestor Lopez David Brown Vittorio Camarchia Charles Campbell George Duh Xiaohu Fang Wolfgang Heinrich Mahdi Javid Anh-Vu Pham Zova Popovic Rüdiger Quay Joseph Staudinger Steven Bowers Debasis Dawn Peter Asbeck Cynthia Hang Muhammad Ruhul Hasin Arvind Keerti Sushil Kumar Chandrakanth Reddy Chappidi Mark Van der Heiiden Hyun Jin Yoo John Wood Anding Zhu Richard Braithwaite Paul Draxler **Christian Fager** Pere L. Gilabert Allen Katz Jongseok Park Armando Cova Sudipto Chakraborty Najme Ebrahimi Sankaran Aniruddhan **Emanuel Cohen** Jonathan Comeau Kaushik Dasgupta Tumay Kanar Byung-Wook Min Peyman Nazari Volker Ziegler Samet Zihir Joe Qiu Taiyun Chi **Richard Al Hadi** Goutam Chattopadhyay Danny Elad Ahmed Gadallah Pavam Hevdari Jean-Olivier Plouchart Kaushik Sengupta Munkyo Seo Zuo-Min Tsai William Deal Theodore Reck José Luis Gonzalez-Jimenez Daquan Huang Dietmar Kissinger Wooram Lee Lei Liu

Paolo Enrico de Falco

Xinyan Tang Wang Wang Davide Mencarelli Mona Jarrahi **Tibor Berceli** David Harame **Dimitris Pavlidis** Zhenzhou Tang Frederick Raab Marc Franco Ramon Beltran **Richard Campbell Robert Caverly** Riccardo Colella José Garcia Arturo Mediano Roberto Vincenti Gatti **Glenn Hopkins** Arnaud Amadjikpe Aly Fathy **Robin Garg** Sree Kasturi Venkata Kishore Kothapudi Julio Navarro Abbas Omar Hasan Sharifi Debabani Choudhury Jeffrey Nanzer Nils Pohl Wael Ahmad Rudy Emrick Markus Gardill Babak Jamali Alexander Koelpin KJ Koh James Krieger Suresh Venkatesh Jacquelyn Vitaz Christian Waldschmidt Steven Rosenau Kenneth Kolodziej Slim Boumaiza Timothy Lee Arnaldo Oliveira Negar Reiskarimian Aida Vera Lopez Thomas Ussmueller Alessandra Costanzo Jasmin Grosinger Changzhan Gu Intikhab Hussain Victor Lubecke Manuel Monge **Etienne Perret** Hamed Rahmani Lora Schulwitz Kazuya Yamamoto Jiang Zhu Kenjiro Nishikawa Nuno Carvalho Seungyoung Ahn Marco Dionigi **Apostolos Georgiadis** Paolo Mezzanotte Nosherwan Shoaib **Dieff Vital** Mahmoud Wagih

Philipp Pahl

Olga Boric-Lubecke Hung-Wei Wu Xin Jin Changzhi Li Shekh Md Mahmudul Islam Tomislav Markovic Giacomo Paolini **Dominique Schreurs** Rui Ma Abhijit Chatterjee José-Maria Munoz-Ferreras Mehmet Ogut Adrian Tang Kenneth Mays Damla Dimlioglu Chia-Chan Chang Kavita Goverdhanam Sanggeun Jeon Ruochen Lu Fred Schindler Shreyas Sen Kaiyuan Yang Shovan Maity Debavan Das John Hu Fabio Sebastiano Joseph Bardin Evan Jeffrey Luca Pierantoni Sorin Voinigescu Ari Feldman Thomas Zwick

GETTING AROUND AT IMS2022

Thank You to Our IMS Sponsors

COLORADO CONVENTION CENTER

08:00 - 17:00 | Sunday, 19 June 2022

WORKSHOP TITLE		WORKSHOP ABSTRACT			
ACM	 Large-Scale Antenna Arrays: Circuits, Architectures, and Algorithms Sponsors: IMS; RFIC Organizers: Gernot Hueber, Silicon Austria Labs; Renyuan Wang, BAE Systems; Subhanshu Gupta, Washington State Univ. ROOMS: 107/109/111/113 08:00 - 17:00 	Wireless networks have fueled socio-economic growth worldwide and are expected to further advance to enable new applications such as autonomous vehicles, virtual/augmented-reality, and smart cities. Due to shortage of sub-6GHz spectrum, mm-wave frequencies play an important role in the emerging 6G and the communication-on-the-move applications. Given that the propagation loss in the lower mm-wave band needs to be compensated by antenna array gain and densification of base stations with cell radius as small as a hundred meters, radio chipsets need to be power and cost efficient. To make radio chipsets power and cost efficient, state-of-the-art mm-wave-net transceivers are designed with phased antenna array (PAA). As a consequence, signal processing techniques and network protocols for mm-wave frequency band where more than 10GHz bandwidth can be used to meet the ever-increasing demands. Their realization will demand addressing a completely new set of challenges including wider bandwidths, larger antenna array size, and higher cell density. These new system requirements demand fundamental rethinking of radio architectures, signal processing and networking protocols. Major breakthroughs are thus required in radio front-end architectures to enable coherent combining of wideband mm-wave spectrum, as most commonly adopted PAA-based radios face many challenges in achieving fast beam training, interference suppression, and wideband data communication. Through this workshop, we will look at the fundamental issue of coherent signal combination at these large scales from sub-GHz to sub-THz enabled by a diverse group of speakers with expertise spanning circuits, architecture, algorithms, and applications. The coherent combination will bring out true-time-delay array architectures including recent developments in wideband delay compensation methods with large range-to-resolution ratios. The delay compensation at different points of the receiver chain including RF, baseband, and digital will empower not only traditional wire			
dcw	SWIPT – Simultaneous Wireless Information and Power Transmission for Future IoT Solutions Sponsor: IMS Organizers: Alessandra Costanzo, Università di Bologna; Nuno Borges Carvalho, Instituto de Telecomunicações ROOMS: 102/104/106 08:00 – 17:00	5G and future 6G wireless communications have an objective to massively deploy IoT sensors everywhere; this is important for smart cities, health sensors, space exploration and so on. In this workshop the combination of wireless power transmission, wireless communications and energy harvesting will be presented with clear applications in several use cases. Academics around the world and industry will be presenting their latest developments.			
Wac	 Health Aspects of mm-Wave Radiation in 5G and Beyond Sponsor: IMS Organizers: Abbas Omar, OvG Universität Magdeburg; Ke Wu, Polytechnique Montréal; Raafat R. Mansour, Univ. of Waterloo ROOMS: 108/110/112 08:00 - 17:00 	Utilizing mm-waves in mobile communications has been known to be associated with much lower radiation powers and much shorter communication ranges. This has given rise to what are called "Microcells" and "Picocells", whose coverage areas do not exceed a few meters. These cells are responsible for the communication with the User Equipment (UE). Their backhaul communications with high-power Base Stations (BS) are either wired (usually fiber-optical) or in a Line-of-Sight (LOS) scenario. LOS wireless communications do not involve wave-matter interactions, as any LOS obstacle heavily deteriorates the communication quality. Health aspects of 5G and beyond is therefore limited to the extremely low-power short-range Picocell-UE communication. Another related relevant aspect is the very strong mm-wave attenuation in water-rich substances characterizing biological tissues. mm-Waves cannot therefore penetrate into biological objects (eg human and animal bodies and plants) more than few millimeters. Health aspects must therefore be investigated within the skin area. Deeper inside the body, mm-waves assume negligible intensities, which are much safer than those of earlier standards (eg 3G and 4G). A group of very competent scientists will talk at this workshop. These represent standardization institutions, academic scientists involved in health issues of electromagnetic radiations, and physicists, who can qualitatively estimate the in-vivo radiation levels and the electromagnetic loss mechanisms dominating the wave-matter interactions in biological substances. The expected results should be very calming for the public, as it will be shown that social-media widely-spread views of pseudoscience and conspiracy theorists claiming serious health hazards, which are caused generally by mm-wave radiation and particularly as related to 5G and beyond, are clearly BASELESS. To a great extent, these claims are based on mixing up ionizing and nonionizing radiation. The mechanisms of wave-matter interactions in the latter are fully desc			
WOD	Micro and Nano Technology Challenges to Address 6G Key Performance Indicators Sponsors: IMS; RFIC Organizers: Didier Belot, <i>CEA-LETI</i> ; Wolfgang Heinrich, <i>FBH</i> ROOMS: 201/203 08:00 - 17:00	Telecom communities are beginning to prepare the next generation of mobile telecom, the 6G, and present KPIs going to the Tbps, 300GHz carrier frequency, space multiplexing, spectrum agility, dense Massive MIMO, wide bands, and so forth. Serving these challenges, microelectronics communities must re-think their medium term roadmap: what role can CMOS processes play? Is SiGe HBT a good answer to these KPIs? Do we need more exotic technologies such as III-V HBT or HEMT? How to do Heterogeneous Integrations, in a 3D approach? How to integrate antennas and passives?			

SUNDAY

COLORADO CONVENTION CENTER

08:00 - 17:00 | Sunday, 19 June 2022

WORKSHOP ABSTRACT	WORKSHOP TITLE	
The Power Amplifier (PA) continues to be a critical building block in mm-wave communication systems, often dictating the overall system efficiency and can thereby impose constraints on system deployment (eg max phased-array size due to thermal constraints). As such, many publications focus on efficiency enhancement techniques for mm-wave power amplifiers. However, when used in systems targeting "5G and Beyond" applications, transceiver bandwidths must be suitable to meet the high data-rate specifications, and hence, maximum PA efficiency cannot be blindly pursued. Instead, efficiency enhancement techniques must be explored in close consideration of their implications on bandwidth, which is what this workshop aims to explore more deeply. The goal of this workshop is three-fold: 1) familiarize the audience with PA specifications required for next-gen applications, 2) review well-known (and emerging) efficiency enhancement techniques for mm-wave PAs with perspectives on attainable bandwidth, and 3) discuss techniques to enhance bandwidth while maintaining adequate efficiency required for practical systems. The workshop features talks which will highlight PA specifications for two of the forefront "5G and Beyond" applications. In addition, there will be discussion on design methodologies for maximizing bandwidth while optimizing efficiency in the context of mm-wave and sub-THz linear amplifiers and mm-wave Doherty amplifiers. Lastly, an emerging efficiency enhancement technique, the sub-harmonic switching amplifier, will also be presented.	Wideband and High Efficiency mm-Wave CMOS PA Design for 5G and Beyond Sponsor: RFIC Organizers: Steven Callender, Intel; Sungwon Chung, Neuralink ROOMS: 205/207 08:00 – 17:00	WSE
Quantum computers hold the promise to perform certain complex calculations that are not solvable even with today's most powerful supercomputers. Despite the significant progress made in the last decade in the science and engineering of quantum computation systems, several challenges remain before quantum computation can become practically usable. A key challenge relates to system scalability – fault-tolerant quantum computation will likely require thousands or millions of quantum bits (qubits), far beyond the capacity of current prototypes. Today's most prominent candidate for implementing large-scale systems, the superconducting qubit platform, operates in the microwave regime and is controlled and readout via conventional microwave electronics operating at room temperature. While the current room temperature control and readout approach works for small-scale experiments, it is not scalable to thousands or millions of quantum microwave engineers with new opportunities in microwave modeling, design, and characterization of cryogenic semiconductor and superconductor devices, circuits, and systems. This workshop will address emerging techniques and technologies for quantum information processing, including low-temperature measurements and calibrations, cryogenic CMOS and Josephson superconductive electronics.	Emerging Low- Temperature/Cryogenic Microwave Techniques and Technologies for Quantum Information Processing Sponsors: IMS; RFIC; ARFTG Organizers: Alirio Boaventura, <i>NIST</i> ; Michael Hamilton, <i>Auburn Univ.</i> ROOMS: 401-402 08:00 – 17:00	WSF
With recent 5G deployment underway, the focus of wireless research is shifting toward 6G, which is expected to have a peak data rate of 1Tb/s and air latency less than 100 microseconds, 50 times the peak data rate and one-tenth the latency of 5G. To achieve Tb/s transmissions in 6G, it is inevitable to utilize the frequency band over 100GHz or sub-THz due to enormous amount of available bandwidth. However, the use of such high frequency bands results in more design challenges of RF circuits including output power, noise, linearity, signal conversion, and high-quality signal source for 6G communications and sensing. In addition, the optimal phased array architecture needs to be carefully analyzed such that the compact and energy-efficient system package can be attained. Moreover, to compensate for the severe mm-wave or sub-THz path loss, a large number of phased array is required to enhance EIRP and SNR while appropriate designs are necessary to establish reliable wireless links and ensure the array performance. Failure in any of these will prevent us from moving forward regarding the development of 6G. In this workshop, the main theme to be discussed concentrates on mm-wave design challenges and solutions for 6G wireless communications, especially targeting RF circuits. The workshop starts with an overview of mm-wave 6G to illustrate the whole picture to the audience. Afterwards, the RF design challenges based on silicon technologies to realize 6G systems are paid more attention while the innovative design techniques are provided such that the advantages of low cost and high-level integration in silicon can be still obtained. For in-depth exploration, being a critical building block in RF front-ends, mm-wave and sub-THz PA is specially under discussion to investigate the design bottlenecks as well as technology limitations, and the potential solutions is mentioned while the analog and digital beamforming structures are compared. In this workshop, to overcome the hurdles arising from silicon technologies, a new	mm-Wave Design Challenges and Solutions for 6G Wireless Communications Sponsor: RFIC Organizers: Hsieh-Hung Hsieh, TSMC; Qun Jane Gu, Univ. of California, Davis; Tim LaRocca, Northrop Grumman ROOMS: 403-404 08:00 – 17:00	WSG
The amount of sensing applications at mm-wave frequencies is continuously growing. Most of the applications can be addressed by classical radar techniques, but not all. Additional types of novel energy efficient sensing concepts for near-field imaging arrays and spectroscopy are being investigated. This full-day workshop covers near-field sensing and advanced state of the art radar techniques at mm-wave and THz frequencies. The intention is to showcase the unique applications and innovative concepts for sensing different materials and parameters including vital signs, small motions and distances, permittivity, humidity and gas density, and biomolecules using mm-wave to THz frequencies. The first half of the workshop will focus on various solutions for mm-wave and THz imaging and spectroscopy. For example, real-time THz super-resolution near-field imaging will be discussed, as well as transceivers at THz for gas spectroscopy. Advantages and disadvantages of various sensing approaches will be discussed. In the second half, we will discuss the latest trends and future directions in mm-wave radar systems. We will focus specifically on novel mm-wave radar modulation schemes, advanced system and circuit realizations. The emphasis is on digital radar modulation techniques, such as OFDM, PMCW, spread-spectrum, and their advantages or disadvantages versus classical FMCW radar realizations. The main idea of the workshop is to give an overview on mm-wave and THz sensing concepts and show the future directions for the advanced mm-wave radar transceivers.	mm-Wave and THz Systems for Near-Field Imaging, Spectroscopy and Radar Sensing Applications Sponsor: RFIC Organizers: Omeed Momeni, Univ. of California, Davis; Vadim Issakov, Technische Universität Braunschweig ROOMS: 501-502 08:00 - 17:00	WSH

COLORADO CONVENTION CENTER

08:00 - 17:00 | Sunday, 19 June 2022

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WSI	Advanced Interference Mitigation in Integrated Wireless Transceivers Sponsor: RFIC Organizers: Alyosha Molnar, <i>Cornell Univ.</i> ; Harish Krishnaswamy, <i>Columbia</i> <i>Univ.</i> ; Jin Zhou, <i>Univ.</i> of Illinois at Urbana-Champaign ROOMS: 503-504 08:00 – 17:00	Modern transceivers often rely on many discrete components, such as SAW and BAW filters and duplexers, to protect them from interference. The number of these discrete front-end components is expected to grow further as more bands are made available at RF and mm-wave frequencies, limiting the system cost, form factor and flexibility. Also, while integrated self-interference cancellation has been demonstrated, many challenges remain at the antenna interface and scaling to phased-array and MIMO transceivers. In this workshop, experts from academic and industry will present the state-of-the-art interference mitigation approaches that can be applied to integrated wireless transceivers. Finally, the workshop will conclude with an interactive panel discussion about the potential and limitations of integrated interference mitigation.
USN	System Design Considerations for Advanced Radios Sponsor: RFIC Organizers: Oren Eliezer, Ambiq; Raja Pullela, MaxLinear; Travis Forbes, Sandia National Laboratories ROOMS: 605/607 08:00 – 17:00	This workshop will walk you through the steps involved in designing today's complex radios for applications such as infrastructure cellular, Wi-Fi or mm-wave beam forming arrays from a systems perspective. The workshop caters to students, as well as experienced engineers in the industry, with background in RF systems, circuit design or standards, who are interested in expanding the scope of their knowledge beyond the narrow design tasks they may be exposed to. Attendees will learn how system specifications are derived, how we partition design between RF/Analog/Mixed-signal and digital sections to achieve the most optimum solution in terms of size, power, external BOM. You will hear from speakers who are experts in their areas: a mix from industry and academia. Standards related specification and product level requirements that drive architecture or topology choices will be presented. Using Wi-Fi 802.11be emerging standard as an example, we will outline the salient features and how they compare with previous generations. We will address design considerations imposed by the new standard requirements, with particular focus on RF. Presentations focused on base station cellular transceivers will illustrate the differences between narrow-band (mixer-based) and Direct Sampling/Synthesis approaches. Using microwave and mm-wave point to point communication systems, we will go over design aspects use as line-up analysis to arrive at block level specifications. We will present transmit/receive circuit/system challenges in large-scale arrays, followed by approaches towards realizing scalable, digital-intensive large-scale arrays. Design advances in critical building blocks, such as blocker tolerant receivers and ADPLLs will also be discussed. We will present built-in self-calibration techniques to overcome impairments such as IQ error or LO offset calibration and Digital Pre-Distortion (DPD) for linearization of power amplifiers will be discussed.
WSK	Toward Tbps Optical and Wireline Transceivers: a Tutorial for RFIC Designers Sponsors: IMS; RFIC Organizers: Bahar Jalali Farahani, <i>Cisco</i> ; Mahdi Parvizi, <i>Cisco</i> ROOMS: 705/707/709/711 08:00 - 12:00	According to the latest report by Global Market Insights Inc. the market valuation of optical communication and networking will cross \$30 billion by 2027. The significant revenue comes from the emerging technologies such as IoT (Internet of Things), machine-to-machine networks, AI, cloud-based services, and web-based applications. Several innovations are underway to enhance the wireline and optical transceiver designs so that they can serve the increase in demand and future generations of applications.
WSL	Wireless Proximity Communication Sponsors: IMS; RFIC Organizers: Rocco Tam, NXP Semiconductors; Yao-Hong Liu, IMEC ROOMS: 705/707/709/711 13:30 – 17:00	Wireless proximity communication provides many unique features over conventional wireless communication such as ultra-high data rate, superior data privacy, energy efficiency, mechanical reliability, precision ranging and bandwidth density. However, those unique features always come with many design trade-offs in system complexity, effective communication distance, energy efficiency and system robustness. In this workshop, we are going to go over several wireless proximity communication techniques such as Mid-Field powering and communication for bio-medical implants, impulse ultra-wide-band and mm-wave. The first and second workshops will introduce the applications in latest UWB standard (IEEE 802.15.4z), and the design trade off in commercial UWB SoC system and circuit design. The third workshop will focus on Mid-Field technology for powering and communication with biomedical neuromodulation implants. This technology offers advantages such as significantly smaller, implanted deeper, implant complexity, patient complication and post-surgical pain. The last workshop presents the overview of solid-state-based mm-wave wireless interconnects from fundamental research to commercialization.
WSM	Recent Developments in Sub-6GHz PAs and Front-End Modules Sponsors: RFIC; IMS Organizers: Alexandre Giry, CEA-LETI ; Jennifer Kitchen, Arizona State Univ. ROOMS: 702/704/706 08:00 - 12:00	Increasing demand for high data rates, reduced latency, and increased device density are driving the development of 5G wireless systems. 5G spectrum is presently covering sub-7GHz (FR1) and mm-wave bands (FR2, FR3,). This workshop will bring together experts from academia and industry to highlight recent works and performance trends related to 5G-FR1 Power Amplifiers (PAs) and Front-End Modules (FEMs). Multiband and high linearity requirements, along with the need for higher power and reduced power consumption, make the design of 5G-FR1 PA and FEM highly challenging and critical to overall system performance. Recent trends in Doherty, class F/F ¹ , multi-stage PAs, and Envelope Tracking PA architectures will be highlighted and insights into different design techniques and integration technologies (CMOS, SOI, GaN) will be presented as pathways to enable the integration of future PAs and FEMs. An introduction to emerging heterogeneous technologies combining high-power GaN with CMOS will also provide the attendees with new directions for next-generation PA design and integration.

10

SUNDAY

COLORADO CONVENTION CENTER

08:00 - 17:00 | Sunday, 19 June 2022

WORKSHOP TITLE

WSN	Digitally Intensive PAs and Transmitters for RF Communication Sponsor: RFIC Organizers: Xun Luo, UESTC; Debopriyo Chowdhury, Broadcom R00MS: 702/704/706 13:30 – 17:00	The power amplifiers (PA) and tra greatly affects the quality of serv multi-function trends nowadays, due to their highly reconfigurable first talk, with the aim to powerin power amplifiers are discussed. T are introduced in the second talk power efficiency is discussed. La talk. Finally, the high-performance
WS0	Human Body Communications Sponsor: RFIC Organizers: Antoine Frappé, <i>IEMN (UMR 8520)</i> ; François Rivet, <i>IMS (UMR 5218)</i> ; Fred Lee, <i>Twenty/Twenty</i> <i>Therapeutics</i> R00MS: 708/710/712 08:00 – 12:00	The human body is a new playgro exchange or security. It faces ma with the human body. The last de efficiently. This workshop propos networks and pioneering researc broadband human-body commu communications are introduced communications using ultrasoun

WORKSHOP ABSTRACT

The power amplifiers (PA) and transmitters are the last door in the RF front-end for both the digital and analog kingdoms, one which greatly affects the quality of service (QoS) of the wireless link for modern RF communication, such as 5G, IoT, and beyond. Due to the multi-function trends nowadays, this workshop will showcase the digitally intensive PAs and transmitters, which attract much attention due to their highly reconfigurable nature and rapid development that is on pace with the decreasing scale of CMOS technology. In the first talk, with the aim to powering the next generation of wireless communication, from RF to mm-wave, a series of switched capacitor power amplifiers are discussed. Then, CMOS digital power amplifier and transmitter for efficient signal amplification and beam steering are introduced in the second talk. Next, in the third talk, the all digital transmitter with GaN switching mode power amplifiers with high power efficiency is discussed. Later, digital polar transmitter for impulse-radio ultrawide band communication is introduced in the fourth talk. Finally, the high-performance digital-to-analog converter design towards a digital transmitter is discussed in the fifth talk.

he human body is a new playground for wireless communications to connect health devices or open new services related to information xchange or security. It faces many constraints such as power consumption, quality of service, reliability, and of course being compatible ith the human body. The last decade has seen several innovations that exploit the body as a medium to propagate the information fficiently. This workshop proposes a state-of-the-art of up-to-date research on the topic. It starts with an overview of body area etworks and pioneering research on communications and power delivery through the body. It is followed by recent developments on roadband human-body communication transceivers for wearable health monitoring. Then, surface-wave capacitive body-coupled ommunications are introduced and challenges for upper layers and synchronization of nodes are addressed. Finally, intra-body ommunications using ultrasounds are explored to complete the scope of this workshop.

IMS2022 QUANTUM WEEK

The IMS2022 Quantum Week is a special event organized by the MTT-S Quantum Technologies Working Group and is aimed to strengthen collaboration between the MTT-S and quantum communities. There is an array of technical and social activities including plenaries/keynotes, technical sessions, workshops, a bootcamp, and a reception. To encourage attendance from quantum industry, the Quantum Economic Development Consortium (QED-C) will be collocating a meeting with IMS.

Sunday, 19 June	WSF: Emerging Low-Temperature/Cryogenic Microwave Techniques and Technologies for Quantum Information Processing Quantum Bootcamp
Monday, 20 June	WMF: Superposition and Entanglement: When Microwaves meet Quantum WMP: Quantum RF Receivers: Using Rydberg Atoms for Highly Sensitive and Ultra Wideband Electric Field Sensing
Tuesday, 21 June	Tu1E: Microwave Technologies for Quantum-System Integration Tu2E: Cryogenic Microwave Circuits for Control of Quantum Systems PL2: This is the Right Way to Architect the Microwave Control for Quantum Computers! Tu3E: Cryogenic Measurement and Characterization for Quantum Systems IWTU4: Accelerated Solid State Qubit Pre-Screening IWTU5: Mixed-mode/Differential S-parameter Characterization at Cryogenic Temperatures for Quantum Computing Applications Quantum Reception
Wednesday, 22 June and Thursday, 23 June	QED-C (Hyatt Regency Denver)

QUANTUM BOOT CAMP

08:00 - 12:00

Sunday, 19 June 2022

<u>Roo</u>m: 505-507

This course will provide an introduction to the basics of quantum engineering, targeting microwave engineers who want to understand how they can make an impact in this emerging field. The intended audience includes new engineers, engineers who may be changing their career path, marketing and sales professionals seeking a better understanding of quantum technology, as well as current university students looking to learn more about the practical aspects of Quantum technology. The format of the Quantum Boot Camp is like that of a short course, with speakers covering quantum engineering basics with a focus on the control and measurement of quantum systems and will conclude with a hands-on introduction to the design of superconducting qubits using modern microwave CAD tools. The boot camp is geared towards making the remainder of quantum-week more accessible to attendees.

Speakers/Instructors: Thomas McConkey (IBM) Kevin O'Brien (MIT)

LECTURE ABSTRACT

LECTURE TITLE

Fundamentals of Noise, and Understanding its Effects on RFICs Speaker: Asad Abidi, UCLA

Even circuit designers who are experienced with low noise design can find it difficult to explain how noise is quantified and analyzed.

I will explain the formal methods of quantifying noise and illustrate their use in the design of a variety of common RF circuits. For linear time-invariant circuits such as small-signal amplifiers, noise transfer functions play a key role. For time-varying circuits such as passive mixers and LC oscillators, noise is in many cases injected in discrete time. Methods for the design continue to evolve towards greater simplicity, and I will present some of them.

There is seldom a noise optimum in these circuits. It is usually a tradeoff, as I will show, between noise, large-signal linearity, and power dissipation.

RFIC PLENARY SESSION 17:30 – 19:00 The Future of RFIC is Digital

Sunday, 19 June 2022

Four Seasons Ballroom

Dr. Curtis Ling, Chief Technology Officer, MaxLinear

ABSTRACT: The successful integration of high-performance communication systems in monolithic silicon over the past twenty years is the result of digital circuits becoming an integral part of the analog front end. An important focus of "digital + analog" chip design has been on circuit impairment suppression, which is to say, making analog circuits behave more ideally. Two important examples are the proliferation of direct conversion receivers in high performance applications (to the point of becoming almost passé); and linearization techniques integrated within transceiver signal paths. What will happen as technology scaling continues to feed digital performance without proportional improvements in RF? This talk will briefly examine the evolution and current state of communication systems-on-chips, highlighting the role of digitally-enabled analog in current state of the art; then explore ways in which digital + analog front ends might become increasingly relevant to systems design and network architecture.

BIOGRAPHY: Curtis Ling, Ph.D. is a co-founder of MaxLinear and has served as Chief Technical Officer since April 2006. From March 2004 to July 2006, Dr. Ling served as Chief Financial Officer, and from September 2003 to March 2004, as a co-founder, he consulted for MaxLinear. From July 1999 to July 2003, Dr. Ling served as a principal engineer at Silicon Wave, Inc. From August 1993 to May 1999, Dr. Ling served as a professor at the Hong Kong University of Science and Technology. Dr. Ling received a B.S. in Electrical Engineering from the California Institute of Technology and an M.S. and Ph.D. in Electrical Engineering from the University of Michigan, Ann Arbor.

RFICs into the Roaring 20's: Hot and Cold

Prof. Sorin P. Voinigescu, Stanley Ho Chair of Microelectronics, Director of the VLSI Research Group, Professor of Electrical and Computer Engineering, University of Toronto

ABSTRACT: In this talk, I will look ahead to the challenges and research problems RFIC designers will have to address through the end of the decade. With the end of III-V and silicon-based transistor performance scaling in sight, the push for higher operation frequency, bandwidth, data rate, and dynamic range will continue unabated for the main economic drivers in our field: radio, radar sensors, and for the fiberoptic infrastructure that enables all of them. With little fanfare, the baseband of fiberoptic systems is now approaching 100 GHz, higher than 5G and automotive radar carrier frequencies, with over 200 GS/s sampling rate required for ADCs and DACs. Adding AI elements to all these applications may lead us to the "metaverse," but the power consumption of each RFIC function will have to be drastically reduced if we do not wish to melt this "universe." The good news is that the high frequency performance of all transistor technologies improves by ~30% in the cold down to 70 Kelvin and remains excellent at 2 Kelvin. This will open niche markets for RFICs in space and quantum computing which are likely to grow rapidly. Classical computing, data centers, and AI will also greatly benefit from 77 Kelvin operation, improving speed and reducing the power consumption of the classical computation function. I will wrap up with examples of representative RFICs for all these applications and of the research problems that still need solutions.

BIOGRAPHY: Sorin P. Voinigescu is a Professor in the Electrical and Computer Engineering Department at the University of Toronto where he holds the Stanley Ho Chair in Microelectronics and is the Director of the VLSI Research Group. He is an IEEE Fellow and an expert on millimetre-wave, 100+Gbaud integrated circuits and atomic-scale semiconductor device technologies and has an established research and development track record in industry (Nortel, Quake Technologies, Peraso Technologies). He obtained his PhD degree in Electrical and Computer Engineering from the University of Toronto in 1994 and his M.Sc. Degree in Electronics and Telecommunications from the Polytechnical Institute of Bucharest in 1984.

RFIC RECEPTION AND SYMPOSIUM SHOWCASE

Featuring System & Application Demo Forumand Best Student/Industry Paper Showcase19:00-2	Hyatt Regency Denver, 21:00 Sunday, 19 June 2022 Centennial Ballroom
The RFIC Interactive Reception starts immediately after the Plenary Session and wil and the Systems and Applications Forum in an engaging social and technical evenin innovative work, summarized in poster format. Some showcase papers will also offe	ng event with food and drinks. Authors of these showcases will present their
RFIC Student Paper Awards Finalists:	Showcase D=Demonstration
 A Millimeter-Wave Mixer-First Receiver with Non-Uniform Time- Approximation Filter Achieving >45dB Blocker Rejection RMo1A-1 Ce Yang, Shiyu Su, Mike Shuo-Wei Chen, University of Southern California, USA A Wireless Network of 8.8mm³ Bio-Implants Featuring Adaptive Magnetoelectric Power and Multi-Access Bidirectional Telemetry RMo1C-2 Anghao Yu, Wei Wang, Joshua C. Chen, Zhiyu Chen, Yan He, Amanda Singer, Jacob T. Robinson, Kaiyuan Yang, <i>Rice University, USA</i> Multi-Beam, Scalable 28GHz Relay Array with Frequency and Spatial Division Multiple Access Using Passive, High-Order N-Path Filters RMo1C-4 Parham P. Khial, Samir Nooshabadi, Austin Fikes, Ali Hajimiri, <i>Caltech, USA</i> A DC-to-18GHz SP10T RF Switch Using Symmetrically-Routed Series-TL- Shunt and Reconfigurable Single-Pole Network Topologies Presenting 1.1-to-3.2dB IL in 0.15µm GaAs pHEMT RMo2B-1 Zhaowu Wang, Zhenyu Wang, Tao Yang, Yong Wang, UESTC, China A Sub-THz CMOS Molecular Clock with 20ppt Stability at 10,000s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration RMo3A-1 Mina Kim¹, Cheng Wang¹, Lin Yi², Hae-Seung Lee¹, Ruonan Han¹; ¹MIT, USA, ²Jet Propulsion Laboratory, USA A 2MHz 4-48V VIN Flying-Capacitor Based Floating-Ground GaN DC-DC Converter with Real-Time Inductor Peak-Current Detection and 6µs Load Trasient Response RMo3B-5 Weizhong Chen¹, Chang Yang¹, Lei Chen², Ping Gui¹; ¹Southern Methodist University, USA² Texas Instruments, USA 	 A 21.8-41.6GHz Fast-Locking Sub-Sampling PLL with Dead Zone Automatic Controller Achieving 62.7fs Jitter and -250.3dB FoM RMo3C-2 Wa Chen¹, Yiyang Shu¹, Huizhen Jenny Qian¹, Jun Yin², Pui-In Mak², Sag Gao³, Xun Luo¹; ¹UESTC, China, ²University of Macau, China, ³Zhejiang Juiversity, China A 38GHz Deep Back-Off Efficiency Enhancement PA with Three-Way Doherty Network Synthesis Achieving 11.3dBm Average Output Power and 14.7% Network Synthesis Achieving 11.3dBm Average Output Ontol¹; Picce University, Network Synthesis Achieving 11.3dBm Average Of Secting Active Antenna Inpedance and Complex Channel Response RTu3B-2 Sug-Uk Choi, Kyunghwan Kim, Kangseop Lee, Seunghoon Lee, Ho-Jin Song, OSTECH, Korea
RFIC Industry Paper Awards Finalists:	Showcase D=Demonstration + =Finalist Only
 A Linear High-Power Reconfigurable SOI-CMOS Front-End Module for WI-FI 6/6E Applications RMo1B-5 CEA-Leti, France, D. Parat, A. Serhan, P. Reynier, R. Mourot, A. Giry An All-Silicon E-Band Backhaul-on-Glass Frequency Division Duplex Module with >24dBm PSAT & 8dB NF RMo2A-1 Nokia Bell Labs, USA, Shahriar Shahramian, Michael Holyoak, Mike Zierdt, Joe Weiner, Amit Singh, Yves Baeyens A 0.2-2GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6ns Delay and 330ns/mm² Area Efficiency RMo3B-1 Sandia National Laboratories, USA, Travis Forbes, Benjamin Magstadt, Jesse Moody, Andrew Suchanek, Spencer Nelson An F-Band Power Amplifier with Skip-Layer Via Achieving 23.8% PAE in FinFET Technology RMo4A-2 Intel, USA, Qiang Yu, Jeffrey Garrett, Seahee Hwangbo, Georgios Dogiamis, Said Rami 	 A 26b/s 9.9pJ/b Sub-10GHz Wireless Transceiver for Reconfigurable FDD Wireless Networks and Short-Range Multicast Applications RTu3A-3 ¹Intel, USA, ²Intel, Mexico, Renzhi Liu¹, Asma Beevi K. T.¹, Richard Dorrance¹, Timothy Cox¹, Rinkle Jain¹, Tolga Acikalin¹, Zhen Zhou¹, Tae-Young Yang¹, Johanny Escobar-Pelaez², Shuhei Yamada¹, Kenneth Foust¹, Brent Carlton¹ 802.11ah Transmitter with -55dBr at ±3MHz and -58dBr at ±20MHz ACLR and 60dB 2nd- Order Harmonic Rejection for 470MHz ~ 790MHz TV White Space Band Devices Newracom, USA RTu4A-1 Seong-Sik Myoung, Jonghoon Park, Chang Hun Song, Ryun Woo Kim, Jaeyoung Ryu, Jeongki Choi, Hoai-Nam Nguyen, Seungyun Lee, Ilyong Jung, Jong-Han Lim, Sok Kyu Lee Class-C BAW Oscillator Achieving a Close-In FOM of 206.5dB at 1kHz with Optimal Tuning for Narrowband Wireless Systems RTu4B-1 Texas Instruments, USA, Bichoy Bahr, Danielle Griffith, Ali Kiaei, Thomas Tsai, Ryan Smith, Baher Haroun C to 12+GHz, +30dBm 0IP3, 7.2dB Noise Figure Active Balun in 130nm BiCMOS for RF Sampling Multi-Gbps Data Converters RM03B-2 Texas Instruments, USA, Siraj Akhtar, Gerd Schuppener, Tolga Dinc, Baher Haroun, Swaminathan Sankaran
Systems and Applications Forum Showcase/Demonstrations:	Showcase D=Demonstration
Miniaturized Wirelessly Powered and Controlled Implants for Vagus Nerve Stimulation RMo1C-3 University of California, Los Angeles, USA, Iman Habibagahi, Jaeeun Jang, Avdin Bahakbani	A 56.32Gb/s 16-QAM D-Band Wireless Link Using RX-TX Systems-in- Package with Integrated Multi-L0 Generators in 45nm RFSOI RMo2A-5 CEA-Leti, France, Abdelaziz Hamani, Francesco Foglia Manzillo, Alexandre Silidaris, Nicolas Cassiau, Frederic Hameau, Eabrice Chaix, Cedric Debos

University of California, Los Angeles, USA, Iman Habibagahi, Jaeeun Jang, Aydin Babakhani

Siligaris, Nicolas Cassiau, Frederic Hameau, Fabrice Chaix, Cedric Dehos,

Antonio Clemente, José Luis Gonzalez-Jimenez

RFIC TECHNICAL SESSIONS 08:00 - 09:40

0 Monday, 20 June 2022

	1A-1C	1D-1F	4A-4C
	RMo1A: mm-Wave Transmitters and Receivers for Communication and 5G Applications	RMo1B: Cryogenic and Advanced Front-End Circuits	RMo1C: Emerging Applications of RFICs in Quantum, Biomedical and Communication
	Chair: Hossein Hashemi, <i>Univ. of Southern California</i> Co-Chair: Jeyanandh Paramesh, <i>Carnegie Mellon Univ.</i>	Chair: Emanuel Cohen, <i>Technion, Israel</i> Co-Chair: Ramesh Harjani, <i>University of Minnesota,</i> <i>USA</i>	Systems Chair: Raja Pullela, <i>MaxLinear, USA</i> Co-Chair: Yao-Hong Liu, <i>imec, The Netherland</i> s
	RMo1A-1: A Millimeter-Wave Mixer-First Receiver with Non-Uniform Time-Approximation Filter Achieving >45dB Blocker Rejection C. Yang, Univ. of Southern California; S. Su, Univ. of Southern California; M.SW. Chen, Univ. of Southern California	RMo1B-1: A 4.2–9.2GHz Cryogenic Transformer Feedback Low Noise Amplifier with 4.5K Noise Temperature and Noise-Power Matching in 22nm CMOS FDSOI B. Lin, Georgia Tech; H. Mani, CryoElec; P. Marsh, Carbonics; R. Al Hadi, Alcatera; H. Wang, Georgia Tech	RMo1C-1: An Integrated Quantum Spin Control System in 180nm CMOS K. Omirzakhov, Univ. of Pennsylvania; M.H. Idjadi, Univ. of Pennsylvania; TY. Huang, Univ. of Pennsylvania; S.A. Breitweiser, Univ. of Pennsylvania; D.A. Hopper, Univ. of Pennsylvania; L.C. Bassett, Univ. of Pennsylvania; F. Aflatouni, Univ. of Pennsylvania
	RMo1A-2: A 28GHz/39GHz Dual-Band Four-Element MIMO RX with Beamspace Multiplexing at IF in 65nm CMOS R. Garg, Oregon State Univ.; P. Dania, Oregon State	RMo1B-2: A 2.57mW 5.9–8.4GHz Cryogenic FinFET LNA for Qubit Readout JO. Plouchart, <i>IBM</i> ; D. Yilma, <i>IBM</i> ; J. Timmerwilke, <i>IBM</i> ; S. Chakraborty, <i>IBM</i> ; K. Tien, <i>IBM</i> ; A. Valdes-Garcia,	RMo1C-2: A Wireless Network of 8.8mm ³ Bio-Implants Featuring Adaptive Magnetoelectric Power and Multi-Access Bidirectional Telemetry Z. Yu, Rice Univ.; W. Wang, Rice Univ.; J.C. Chen, Rice
00.10	Univ.; G. Sharma, Oregon State Univ.; A. Dascurcu, Columbia Univ.; S. Gupta, Oregon State Univ.; H. Krishnaswamy, Columbia Univ.; A. Natarajan, Oregon State Univ.	IBM; D. Friedman, IBM	Univ.; Z. Chen, Rice Univ.; Y. He, Rice Univ.; A. Singer, Rice Univ.; J.T. Robinson, Rice Univ.; K. Yang, Rice Univ.
	RMo1A-3: A Millimeter-Wave Front-End for FD/FDD Transceivers Featuring an Embedded PA and an N-Path Filter Based Circulator Receiver	RMo1B-3: A Mixer-First Receiver Frontend with Resistive-Feedback Baseband Achieving 200MHz IF Bandwidth in 65nm CMOS B. Guo, <i>CUIT</i> ; H. Wang, <i>CUIT</i> ; Y. Wang, <i>Zhengzhou Univ</i> .;	RMo1C-3: Miniaturized Wirelessly Powered and Controlled Implants for Vagus Nerve Stimulation I. Habibagahi, Univ. of California, Los Angeles; J. Jang, Univ. of California, Los Angeles; A. Babakhani, Univ. of
00-00	L.C.N. de Vreede, Technische Universiteit Delft; M.S. Alavi, Technische Universiteit Delft RMo1A-4: A Ka-Band Dual Circularly Polarized CMOS Transmitter with Adaptive Scan Impedance Tuner and Active XPD Calibration Technique for Satellite Terminal	K. Li, CUIT; L. Li, UESTC; W. Zhou, UESTC RMo1B-4: A Feedback-Based N-Path Receiver with Reduced Input-Node Harmonic Response V.S. Ravudu, Univ. of Texas at Austin; K.Y. Kim, Univ. of	California, Los Angeles RMo1C-4: Multi-Beam, Scalable 28GHz Relay Array with Frequency and Spatial Division Multiple Access Using Passive, High-Order N-Path Filters
	D. You, Tokyo Tech; Y. Wang, Tokyo Tech; X. Fu, Tokyo Tech; H. Herdian, Tokyo Tech; X. Wang, Tokyo Tech; A. Fadila, Tokyo Tech; H. Lee, Tokyo Tech; M. Ide, Tokyo Tech; S. Kato, Tokyo Tech; Z. Li, Tokyo Tech; J. Pang, Tokyo Tech; A. Shirane, Tokyo Tech; K. Okada, Tokyo Tech	Texas at Austin; D.Z. Pan, Univ. of Texas at Austin; R. Gharpurey, Independent Researcher	P.P. Khial, <i>Caltech</i> ; S. Nooshabadi, <i>Caltech</i> ; A. Fikes, <i>Caltech</i> ; A. Hajimiri, <i>Caltech</i>
	RMo1A-5: A 8–30GHz Passive Harmonic Rejection Mixer with 8GHz Instantaneous IF Bandwidth in 45RFSOI	RMo1B-5: A Linear High-Power Reconfigurable SOI-CMOS Front-End Module for WI-FI 6/6E Applications	
	A. Ahmed, Univ. of California, San Diego; G.M. Rebeiz, Univ. of California, San Diego	D. Parat, <i>CEA-LETI</i> ; A. Serhan, <i>CEA-LETI</i> ; P. Reynier, <i>CEA-LETI</i> ; R. Mourot, <i>CEA-LETI</i> ; A. Giry, <i>CEA-LETI</i>	

RFIC TECHNICAL SESSIONS 10:10 – 11:50 Monday, 20 June 2022

Colorado Convention Center

1A-1C	1D-1F	4A-4C
RMo2A: Multi-Gigabit Transceivers and Modules for Point-to-Point and Emerging	RMo2B: Power Switches, Amplifiers and Power Dividers for mm-Wave and Sub-THz	RMo2C: RF and mm-Wave Transmitters
Applications Chair: Hongtao Xu, Fudan Univ., China Co-Chair: Qun Jane Gu, Univ. of California, Davis, USA	Applications Chair: Alyssa Apsel, Cornell Univ., USA Co-Chair: Domine Leenaerts, NXP Semiconductors, The Netherlands	Chair: Debopriyo Chowdhury, <i>Broadcom, USA</i> Co-Chair: Margaret Szymanowski, <i>Crane Aerospace &</i> <i>Electronics, USA</i>
RMo2A-1: An All-Silicon E-Band Backhaul-on-Glass Frequency Division Duplex Module with >24dBm PSAT & 8dB NF	RMo2B-1: A DC-to-18GHz SP10T RF Switch Using Symmetrically-Routed Series-TL-Shunt and Reconfigurable Single-Pole Network Topologies	RMo2C-1: A 4-to-9GHz IEEE 802.15.4z-Compliant UWB Digital Transmitter with Reconfigurable Pulse-Shaping in 28nm CMOS
S. Shahramian, <i>Nokia Bell Labs</i> ; M. Holyoak, <i>Nokia Bell Labs</i> ; M. Zierdt, <i>Nokia Bell Labs</i> ; J. Weiner, <i>Nokia Bell Labs</i> ; J. Weiner, <i>Nokia Bell Labs</i> ; A. Singh, <i>Nokia Bell Labs</i> ; Y. Baeyens, <i>Nokia Bell Labs</i>	Presenting 1.1-to-3.2dB IL in 0.15µm GaAs pHEMT Z. Wang, UESTC; Z. Wang, UESTC; T. Yang, UESTC; Y. Wang, UESTC	H. Chen, SCUT; Z. Chen, NewRadio Technology; R. Ou, NewRadio Technology; R. Chen, NewRadio Technology; Z. Wu, SCUT; B. Li, SCUT
RMo2A-2: Active Tunable Millimeter-Wave Reflective Surface Across 57–64GHz for Blockage Mitigation and Physical Layer Security	RMo2B-2: A DC–120GHz SPDT Switch Based on 22nm FD-SOI SLVT NFETs with Substrate Isolation Rings Towards Increased Shunt Impedance	RMo2C-2: A 23GHz RF-Beamforming Transmitter with >15.5dBm Psat and >21.7% Peak Efficiency for Inter-Satellite Communications
S. Venkatesh, Princeton Univ.; H. Saeidi, Princeton Univ.; X. Lu, UM-SJTU Joint Institute; K. Sengupta, Princeton Univ.	M. Rack, Université catholique de Louvain; L. Nyssens, Université catholique de Louvain; Q. Courte, Université catholique de Louvain; D. Lederer, Université catholique de Louvain; JP. Raskin, Université catholique de Louvain	K. Ding, Technische Universiteit Eindhoven; D. Milosevic, Technische Universiteit Eindhoven; V. Vidojkovic, Technische Universiteit Eindhoven; R. van Dommele, Technische Universiteit Eindhoven; M. Bentum, Technische Universiteit Eindhoven; P. Baltus, Technische Universiteit Eindhoven
RMo2A-3: A 60GHz Phased Array Transceiver Chipset in 45nm RF SOI Featuring Channel Aggregation Using HRM-Based Frequency Interleaving	RMo2B-3: Analysis and Design of Dual-Peak Gmax-Core CMOS Amplifier in D-Band Embedding a T-Shaped Network	RMo2C-3: A Quadrature-Rotation Phased-Array Transmitter with 15-Bit Phase Tuning and 0/3/6/9/12/15-dB PBOs Efficiency Enhancement
A. Dascurcu, Columbia Univ.; S. Ahasan, Columbia Univ.; A. Binaie, Columbia Univ.; K.J. Lu, Oregon State Univ.; A. Natarajan, Oregon State Univ.; H. Krishnaswamy, Columbia Univ.	J. Kim, POSTECH; CG. Choi, POSTECH; K. Lee, POSTECH; K. Kim, POSTECH; SU. Choi, POSTECH; HJ. Song, POSTECH	J. Zhou, UESTC; H.J. Qian, UESTC; B. Yang, UESTC; X. Luo, UESTC
RMo2A-4: A 17Gb/s 10.7pJ/b 4FSK Transceiver System for Point to Point Communication in 65nm CMOS	RMo2B-4: 280.2/309.2GHz, 18.2/9.3dB Gain, 1.48/1.4dB Gain-per-mW, 3-Stage Amplifiers in 65nm CMOS Adopting Double-Embedded-Gmax-Core	RMo2C-4: An E-Band CMOS Direct Conversion IQ Transmitter for Radar and Communication Applications
H. Afzal, Univ. of California, Davis; C. Li, Univ. of California, Davis; O. Momeni, Univ. of California, Davis	B. Yun, KAIST; DW. Park, Kumoh National Institute of Technology; CG. Choi, POSTECH; HJ. Song, POSTECH; SG. Lee, KAIST	S. Lee, POSTECH; K. Kim, POSTECH; K. Lee, POSTECH; S. Cho, POSTECH; SU. Choi, POSTECH; J. Lee, ETRI; B. Koo, ETRI; HJ. Song, POSTECH
RMo2A-5: A 56.32Gb/s 16-QAM D-Band Wireless	RMo2B-5: 4-Way 0.031mm ² Switchable Bidirectional Power Divider for 5G mm-Wave Beamformers	
Link Using RX-TX Systems-in-Package with Integrated Multi-LO Generators in 45nm RFSOI A. Hamani, CEA-LETI; F. Foglia Manzillo, CEA-LETI; A. Siligaris, CEA-LETI; N. Cassiau, CEA-LETI; F. Hameau, CEA-LETI; F. Chaix, CEA-LETI; C. Dehos, CEA-LETI; A. Clemente, CEA-LETI; J.L. Gonzalez-Jimenez, CEA-LETI	A. Franzese, IHP; R. Negra, RWTH Aachen Univ.; A. Malignaggi, IHP	

MONDAY

RFIC TECHNICAL SESSIONS 13:30 - 15:10

Monday, 20 June 2022

Colorado Convention Center

	1A-1C	1D-1F	4A-4C
	RMo3A: mm-Wave and Sub-THz Circuits and Systems for Radar Sensing and Metrology	RMo3B: Mixed-Signal Building Blocks for Next-Generation Systems	RMo3C: Frequency Generation Techniques for 5G and IoT
	Chair: Vito Giannini, <i>Uhnder, USA</i> Co-Chair: Vadim Issakov, <i>Technische Universität</i> <i>Braunschweig, Germany</i>	Chair: Subhanshu Gupta, <i>Washington State Univ., USA</i> Co-Chair: Bahar Jalali Farahani, <i>Cisco, USA</i>	Chair: Wanghua Wu, Samsung, USA Co-Chair: Andreia Cathelin, STMicroelectronics, France
13-30	RMo3A-1: A Sub-THz CMOS Molecular Clock with 20ppt Stability at 10,000s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error	RMo3B-1: A 0.2–2GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6ns Delay and 330ns/mm² Area Efficiency	RMo3C-1: Open-Source Fully-Synthesizable ADPLL for a Bluetooth Low-Energy Transmitter in 12nm FinFET Technology
	Integration M. Kim, <i>MIT</i> ; C. Wang, <i>MIT</i> ; L. Yi, <i>Jet Propulsion Lab</i> ; HS. Lee, <i>MIT</i> ; R. Han, <i>MIT</i>	T. Forbes, Sandia National Laboratories; B. Magstadt, Sandia National Laboratories; J. Moody, Sandia National Laboratories; A. Suchanek, Sandia National Laboratories; S. Nelson, Sandia National Laboratories	K. Kwon, Univ. of Michigan; O. Abdelatty, Univ. of Michigan; D.D. Wentzloff, Univ. of Michigan
13.50	RMo3A-2: A Small-Area, Low-Power 76–81GHz HBT-Based Differential Power Detector for Built-In Self-Test in Automotive Radar Applications	RMo3B-2: DC to 12+GHz, +30dBm 0IP3, 7.2dB Noise Figure Active Balun in 130nm BiCMOS for RF Sampling Multi-Gbps Data Converters	RMo3C-2: A 21.8–41.6GHz Fast-Locking Sub-Sampling PLL with Dead Zone Automatic Controller Achieving 62.7fs Jitter and -250.3dB FoM
	Y. Wenger, Technische Univ. Braunschweig; H.J. Ng, Hochschule Karlsruhe; F. Korndörfer, IHP; B. Meinerzhagen, Technische Univ. Braunschweig; V. Issakov, Technische Univ. Braunschweig	S. Akhtar, Texas Instruments; G. Schuppener, Texas Instruments; T. Dinc, Texas Instruments; B. Haroun, Texas Instruments; S. Sankaran, Texas Instruments	W. Chen, UESTC; Y. Shu, UESTC; H.J. Qian, UESTC; J. Yin, Univ. of Macau; PI. Mak, Univ. of Macau; X. Gao, Zhejiang Univ.; X. Luo, UESTC
11.10	RMo3A-3: A Compact 28nm FD-SOI CMOS 76–81GHz Automotive Band Receiver Path with Accurate 0.2° Phase Control Resolution	RMo3B-3: An 11GS/s 2×10b 20–26GHz Modulator Using Segmented Non-Linear RF-DACs and Non-Overlapping LO Signals	RMo3C-3: A 59fs-rms 35GHz PLL with FoM of -241dB in 0.18µm BiCMOS/SiGe Technology
	A. Le Ravallec, STMicroelectronics; P. Garcia, STMicroelectronics; J.C. Azevedo Gonçalves, STMicroelectronics; L. Vincent, CIME Nanotech; JM. Duchamp, G2Elab (UMR 5269); P. Benech, G2Elab (UMR 5269)	V. Åberg, Chalmers Univ. of Technology; C. Fager, Chalmers Univ. of Technology; R. Hou, Ericsson Research; L. Svensson, Chalmers Univ. of Technology	R. Bindiganavile, <i>Univ. of Utah</i> ; A. Wahid, <i>Univ. of Utah</i> ; J. Atkinson, <i>Univ. of Utah</i> ; A. Tajalli, <i>Univ. of Utah</i>
44.00	RMo3A-4: An E-Band Phase Modulated Pulse Radar SoC with an Analog Correlator	RMo3B-4: A 345µW 1GHz Process and Temperature Invariant Constant Slope-and-Swing Ramp-Based 7-Bit Phase Interpolator for True-Time-Delay Spatial	RMo3C-4: A 14GHz-Band Harmonic Tuned Low-Power Low-Phase-Noise VCO IC with a Novel Bias Feedback Circuit in 40nm CMOS SOI
4 4	W. Zhou, Univ. of Minnesota; Y. Tousi, Univ. of Minnesota	Signal Processors S. Mohapatra, Washington State Univ.; CC. Lin, Washington State Univ.; M. Chahardori, Washington State Univ.; E. Ghaderi, Washington State Univ.; M.A. Hoque, Washington State Univ.; S. Gupta, Washington State Univ.; D. Heo, Washington State Univ.	M. Fang, Waseda Univ.; T. Yoshimasu, Waseda Univ.
	RMo3A-5: A 29-to-36GHz 4TX/4RX Dual-Stream Phased-Array Joint Radar-Communication CMOS fransceiver Supporting Centimeter-Level 2D Imaging and 64-QAM 0TA Wireless Link	RMo3B-5: A 2MHz 4–48V VIN Flying-Capacitor Based Floating-Ground GaN DC-DC Converter with Real-Time Inductor Peak-Current Detection and 6µs Load Transient Response	RMo3C-5: A 5G 65nm PD-SOI CMOS 23.2-to-28.8GHz Low-Jitter Quadrature-Coupled Injection-Locked Digitally-Controlled Oscillator
F	. Zhao, Tsinghua Univ.; W. Deng, Tsinghua Univ.; R. Wu, ZAS; H. Jia, Tsinghua Univ.; Q. Wu, Tsinghua Univ.; J. Xin, CAS; Z. Zeng, CAS; Y. Li, CAS; Z. Wang, RITS; B. Chi, Fsinghua Univ.	W. Chen, Southern Methodist Univ.; C. Yang, Southern Methodist Univ.; L. Chen, Texas Instruments; P. Gui, Southern Methodist Univ.	R. Dumont, STMicroelectronics; M. De Matos, IMS (UMR 5218); A. Cathelin, STMicroelectronics; Y. Deval, IMS (UMR 5218)
16.10			

RFIC TECHNICAL SESSIONS 15:40 - 17:00

Monday, 20 June 2022

Colorado Convention Center

1A-1C	1D-1F	4A-4C
RMo4A: Power Amplifiers for 100+ GHz	RMo4B: Switch Technology, CMOS Reliability,	RMo4C: RF, mm-Wave and Sub-THz VCOs
Applications Chair: Jennifer Kitchen, Arizona State Univ., USA	and ESD Chair: Alvin Joseph, <i>GLOBALFOUNDRIES</i> , USA	Chair: Teerachot Siriburanon, Univ. College Dublin, Ireland
Co-Chair: Steven Callender, Intel, USA	Co-Chair: Edward Preisler, Tower Semiconductor, USA	Co-Chair: Howard C. Luong, HKUST, China
RMo4A-1: A 22nm FD-SOI CMOS 2-Way D-Band Power Amplifier Achieving PAE of 7.7% at 9.6dBm 0P1dB and 3.1% at 6dB Back-Off by Leveraging Adaptive	RMo4B-1: Advanced 200mm RF SOI Technology Exhibiting 78fs RON×COFF and 3.7V Breakdown Voltage Targeting Sub 6GHz 5G FEM	RMo4C-1: An 8.2–10.2GHz Digitally Controlled Oscillator in 28nm CMOS Using Constantly-Conducting NMOS Biased Switchable Capacitor
Back-Gate Bias Technique E. Rahimi, Keysight Technologies; F. Bozorgi, Barkhausen Institut; G. Hueber, Silicon Austria Labs	F. Gianesello, A. Fleury, F. Julien, J. Dura, S. Monfray, S. Dhar, C.A. Legrand, J. Amouroux, B. Gros, L. Welter, SC. Charbuillet, P. Cathelin, E. Canderle, N. Vulliet, E. Escolier, L. Antunes, E. Granger, P. Fornara, C. Rivero, G. Bertrand, P. Chevalier, A. Regnier, D. Gloria, STMicroelectronics	L. Wang, J. Meier, J. Bastl, T. Lauber, <i>RWTH Aachen Univ.</i> ; A. Köllmann, <i>NXP Semiconductors</i> ; U. Möhlmann, <i>NXP Semiconductors</i> ; M. Hanhart, <i>RWTH Aachen Univ.</i> ; A. Meyer, <i>RWTH Aachen Univ.</i> ; C. Nardi, <i>RWTH Aachen Univ.</i> ; R. Wunderlich, <i>RWTH Aachen Univ.</i> ; S. Heinen, <i>RWTH Aachen </i>
RMo4A-2: An F-Band Power Amplifier with Skip-Layer Via Achieving 23.8% PAE in FinFET Technology	RMo4B-2: Superior Reliability and Low Self-Heating of a 45nm CMOS 39GHz Power Amplifier for 5G mmWave Applications	RMo4C-2: A 14.5–17.9GHz Harmonically-Coupled Quad-Core P-N Class-B DCO with -117.3dBc/Hz Phase Noise at 1MHz Offset in 28nm CMOS
Q. Yu, Intel; J. Garrett, Intel; S. Hwangbo, Intel; G. Dogiamis, Intel; S. Rami, Intel	P. Srinivasan, S. Syed, J.A. Sundaram, S. Moss, S. Jain, P. Colestock, N. Cahoon, A. Bandyopadhyay, F. Guarin, B. Min, M. Gall, <i>GLOBALFOUNDRIES</i>	I. Apostolina, Università di Pavia; D. Manstretta, Università di Pavia
RMo4A-3: A 97–107GHz Triple-Stacked-FET Power Amplifier with 23.7dB Peak Gain, 15.1dBm PSAT, and 18.6% PAEMAX in 28nm FD-SOI CMOS	RMo4B-3: Impact of Non-Conducting RF and DC Hot Carrier Stresses on FinFET Reliability for RF Power Amplifiers	RMo4C-3: A Compact CMOS 76–82GHz Super- Harmonic VCO with 189dBc/Hz FoM Operating Based on Harmonic-Assisted ISF Manipulation
K. Kim, POSTECH; K. Lee, POSTECH; SU. Choi, POSTECH; J. Kim, POSTECH; CG. Choi, POSTECH; HJ. Song, POSTECH	X. Ding, Auburn Univ.; G. Niu, Auburn Univ.; H. Zhang, MaxLinear; W. Wang, MaxLinear; K. Imura, MaxLinear; F. Dai, Auburn Univ.	B. Moradi, Univ. of California, Irvine; X. Liu, Univ. of California, Irvine; M.M. Green, Univ. of California, Irvine; H. Aghasi, Univ. of California, Irvine
RMo4A-4: A 124–152GHz >15dBm Psat 28nm CMOS PA Using Chebyshev Artificial-Transmission-Line- Based Matching for Wideband Power Splitting and Combining	RMo4B-4: Device for Protecting High Frequency and High Data Rate Interface Applications in FinFET Process Technologies	RMo4C-4: Sub-THz Switch-Less Reconfigurable Triple-/Push-Push Dual-Band VCO for 6G Communication
J. Zhang, Fudan Univ.; T. Wu, Fudan Univ.; Y. Chen, Univ. of Macau; J. Ren, Fudan Univ.; S. Ma, Fudan Univ.	S. Parthasarathy, Analog Devices; R. Shumovich, Analog Devices; J. Salcedo, Analog Devices; R. Broughton- Blanchard, Analog Devices; JJ. Hajjar, Analog Devices	S. Oh, Seoul National Univ.; J. Kim, Seoul National Univ.; J. Oh, Seoul National Univ.

COLORADO CONVENTION CENTER

08:00 - 17:00 | Monday, 20 June 2022

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WMA	Advanced Manufacturing and Design Techniques for Emerging 3D Microwave and mm-Wave RF Filters Sponsors: IMS Organizers: Dimitra Psychogiou, Univ. College Cork; Michael Höft, CAU; Roberto Gómez-García, Universidad de Alcalá ROOMS: 107/109/111/113 08:00 – 17:00	This workshop will focus on recent advances in emerging manufacturing and integration processes for 3D microwave and mm-wave RF filters for the next generation of wireless and satellite communication systems. In particular, the workshop will present new RF design and electromagnetic modeling techniques for new classes of RF filtering components (bandpass/bandstop filters, multi-band filters and multiplexers) based on well-established manufacturing processes such as CNC machining and Si-based microfabrication that enables the realization of RF filters from mm-waves to frequencies in the sub-THz region (eg 700GHz). Furthermore, the workshop will provide an overview of emerging digital additive manufacturing processes such as stereolithography, selective laser sintering for new types of materials such as ceramics, plastics and metals and their application to advanced RF filtering architectures. The potential of these processes for complex geometries as well as for RF filters with advanced RF performance, high-frequency of operation, small form factor and low weight will be discussed in detail. Lastly, the workshop will present new RF design methodologies and novel RF filtering architectures that are uniquely enabled by the manufacturing flexibility of 3D printing that facilitates the realization of unconventional shapes.
WMB	Advances in SATCOM Phased-Arrays and Constellations for LEO, MEO and GEO Systems Sponsors: IMS Organizers: Gabriel M. Rebeiz, Univ. of California, San Diego ROOMS: 102/104/106 08:00 - 17:00	There has been a tremendous advance in satellite communications in the past 3 years. First, Starlink (LEO) has sent upwards of 1600 satellites and is now building 5000 user terminals A WEEK (all based on phased-arrays), OneWeb (LEO) has secured \$5B of funding and has sent 400 satellites and will be ready for operation in December 2021, Amazon Kuiper is building their LEO constellation as we speak, SES with mPower and their 2000-beam phased-arrays in a MEO constellation can now provide 500 Mbps to thousands of ISP (internet service providers) at the same time, and Viasat and HNS have both launched their GEO Tbps satellites each with 300+ beams. All of these units require advanced phased-arrays on the ground for user terminals and SATCOM-On-the-Move. This workshop will address advances in these low-cost ground terminals and in the LEO/MEO/GEO constellations, and will present the silicon technologies needed for this work.
WMC	Emerging MIT/PCM Based Reconfigurable Microwave Devices Sponsors: IMS Organizers: Atif Shamim, <i>KAUST</i> ; Gwendolyn Hummel, Sandia National Laboratories; Tejinder Singh, Dell Technologies ROOMS: 108/110/112 08:00 – 17:00	The extremely crowded and rapidly changing modern spectral environment has significantly increased the demand for highly reconfigu- rable RF technologies of high performance and small size. While RF switches are key elements in modern wireless communications and defense applications, switch performance has been stagnant for the last decade. With 5G being rapidly implemented and 6G on the horizon, RF systems are moving to the mm-wave bands and the RF loss in fundamental elements such as switches is becoming even more critical. Many commercially available switch technologies have certain issues with at least one of the following: resistive load, capacitive interference, limited bandwidth, low power operation, and/or nonlinearity. Recent work on emerging chalcogenide phase change material (PCM)-based switches has demonstrated a breakthrough innovation and a new class of reconfigurable devices exhibiting high performance, better monolithic and heterogeneous integration capabilities with other switch technologies. Along with PCMs, metal-insulator transition (MIT) material such as vanadium dioxide based devices have also gained significant interest and researchers around the globe have demonstrated various interesting applications using PCM/MIT including but not limited to tunable mm-wave components, reconfigurable electro-optical components, and resonant sensors. Several research groups and industries are working to mature these technologies for high performance and efficient future wireless systems. This workshop aims to trigger the discussion on emerging PCM/MIT technologies regarding recent innovations, challenges, integration possibilities, limitations, and future trends.
WMD	Front-End Module Integration and Packaging for 6G and Beyond 100GHz Communication and Radar Systems Sponsors: IMS Organizers: Kamal Samanta, Sony; Kevin Xiaoxiong Gu, Metawave ROOMS: 201/203 08:00 – 17:00	Research and development on mm-wave front-end implementations are expanding to a new frontier beyond 100GHz for emerging 6G communication and radar imaging applications. This proposed workshop covers the latest advancement of packaging and integration technologies for designing and implementing >100GHz front-end modules including in-depth discussions of different substrates, interconnects, antennas, co-design with RFICs, thermal management, system demos/prototypes, and so on. We plan to have 11 experts (5 from university/research institutes; 6 from industry) to present their pioneering works in this area: (1) Prof. Mark Rodwell from UCSB and Director of the SRC/DARPA ComSenTer Wireless Research Center, (2) Dr. Muhammad Furqan from Infineon, (3) Siddhartha Sinha from imec, (4) Dr. Telesphor Kamgaing from Intel, (5) Dr. Alberto Valdes-Garcia from IBM Research, (6) Prof. Wolfgang Heinrich from the Ferdinand-Braun-Institut (FBH), (7) Dr. Augusto Gutierrez-Aitken from Northrop Grumman, (8) Dr. Jon Hacker from Teledyne, (9) Dr. Goutam Chattopadhyay from NASA JPL, (10) Prof. Emmanouil (Manos) M. Tentzeris from Georgia Tech, and (11) Dr. Venkatesh Srinivasan from Texas Instruments.
	08:00 - 17:00	Have you downloaded the IMS and DBSSED DBSSED

Have you downloaded the IMS and Microwave Week Mobile App?

To download the app, search for 'IMS Microwave Week' on the app store for your device or scan a QR code.

Download on the App Store

COLORADO CONVENTION CENTER

08:00 - 17:00 | Monday, 20 June 2022

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WME	In-Band Full-Duplex Integrated Devices and Systems Sponsors: IMS; RFIC Organizers: Kenneth E. Kolodziej, <i>MIT Lincoln</i> <i>Laboratory</i> ; Timothy M. Hancock, <i>DARPA</i> ROOMS: 205/207 08:00 – 17:00	Many wireless systems could benefit from the ability to transmit and receive on the same frequency at the same time, which is known as in-band full-duplex (IBFD) and/or simultaneous transmit and receive (STAR). As this area matures, research is shifting towards reducing device form factors and creating novel self-interference cancellation techniques along with completely-integrated IBFD transceivers. In this workshop, experts from industry, academic and federal research institutions will discuss the various approaches that can be taken to construct IBFD systems and devices in an integrated fashion. Additionally, a mini-panel session is planned where the workshop speakers will debate the answers to questions posed by attendees for an interactive discussion with the audience.
MME	Superposition and Entanglement: When Microwaves meet Quantum Sponsors: IMS Organizers: Fabio Sebastia- no, Technische Universiteit Delft; Joseph Bardin, Google, UMass Amherst ROOMS: 401-402 08:00 - 17:00	Microwave techniques are central to many modern quantum computing and quantum sensing platforms, ranging from those implement- ed with superconducting circuits to those relying on trapped ions. For instance, in superconducting technologies, qubits are implement- ed using nonlinear microwave resonators — which sometimes are frequency tunable — and coupling between qubits is often mediated using tunable LC filter networks. The state of a superconducting quantum processor is controlled using microwave signaling and measured using microwave reflectometry. Similarly, spin-qubit and trapped-ion systems often rely heavily on microwave signaling for their operation. As the culmination of decades of research, quantum computers can now perform certain classes of computations that are impractical using classical supercomputers. While today's quantum computers have largely been enabled by advances in commercial microwave technology, the quest to build these machines has also led to pioneering research that has pushed the limits of microwave amplification, packaging, filtering, and system design. In this workshop, leading researchers will describe progress in microwave technologies as applied to quantum computing and quantum sensing. The workshop is both broad and deep, covering microwave technologies that are used across the quantum computing landscape. At the high level, researchers will describe how microwave technologies are used to control superconducting, spin, and trapped-ion based quantum processors, covering a wide array of topics ranging from how microwave fields can be used in the trapping and manipulation of single ions to modular and SoC-based control systems for next-generation superconducting and spin qubit based quantum computers. The workshop will also contain deep dives into areas such as the systematic design of near-quantum-limited microwave parametric amplifiers, superconducting interconnect and filtering networks, system level quantum-coherent microwave packaging techniques, the cryogenic noise limits
WMG	Supply Modulation Techniques: From Device to System Sponsors: IMS Organizers: Olof Bengtsson, <i>FBH</i> ; Roberto Quaglia, <i>Cardiff</i> <i>Univ.</i> ROOMS: 403-404 08:00 – 17:00	Power amplifiers for high frequency applications can benefit greatly from the ability to dynamically vary the supply voltage. For example, when spectral efficient signals are used, their large amplitude dynamic generally requires a compromise between linearity and efficiency of the amplifier, leading to poor average efficiency. By applying supply modulation in the form of envelope tracking, the average efficiency can be enhanced significantly. The introduction of GaN technology has enabled highly efficient very fast switch-based supply modulators that are required for the very large instantaneous bandwidth in telecommunication for space and the future 5G systems. With the introductions of 5G the system frequency increase and power per PA is reduced by distributed PA solutions like MIMO. The same is true for space applications but here, the main motivation for the development of efficient solid-state solutions is the transfer from bulky tube based solutions. The large instantaneous bandwidth of the future telecom systems poses a challenge for dynamic supply modulation but the high frequency and reduced power allows for novel integrated solutions with reduced parasitic effects where the modulator and RFPA are integrated on the same chip. This workshop will: introduce the motivations and applications of supply modulation technologies for space and terrestrial telecommunication; discuss how RF transistor technologies affect the requirements of the supply modulator and the effectiveness of supply modulations, show advanced design techniques for the supply modulator and the integration with fields adjacent to the microwave industry and permit a fruitful exchange of ideas. The organizer's aim is to actively involve the audience in the discussion, in order to provide them with a useful experience. For this reason, an online quiz will involve the audience with questions that can be answered only by interacting with the speakers.
HWM	RF Large-Signal Transistor Performance Limits Related to Reliability and Ruggedness in Mobile Circuit Applications Sponsors: IMS Organizers: Michael Schroter, Technische Universität Dresden; Peter Zampardi, Qorvo ROOMS: 505-507 08:00 – 12:00	The focus of the workshop is to provide an overview on transistor performance limits in terms of reliably achievable RF output power of various semiconductor technologies that are presently competing for mobile radio-frequency (RF) applications such as 5G, 6G, automotive radar and imaging, operating in the mm-wave frequency range (ie 30GHz to 300GHz). Of particular interest here are power amplifiers, oscillators, Mach-Zehnder-interferometers, and all sorts of RF buffer circuits that drive transistors to their dynamic large-signal limits and are implemented in semiconductor technologies such as III-V HBTs, SiGe HBTs and FDSOI-CMOS. The presentations will explore the presently quite heterogeneous approaches for determining the transistor related safe-operating-area in terms of reliability and ruggedness for designing circuits that are supposed to deliver high output power at high frequencies in mobile applications. The workshop starts with a tutorial on the design specifications of the above mentioned circuits and the corresponding requirements for large-signal dynamic transistor operation up to the mm-wave region. Based on this motivation, several presentations will outline, for each of the technologies, the state-of-the-art of transistor characterization for RF ruggedness as well as the device physics that cause degradation and the modeling approaches for large-signal device testing in the mm-wave range.

COLORADO CONVENTION CENTER

08:00 - 17:00 | Monday, 20 June 2022

	WORKSHOP TITLE	WORKSHOP ABSTRACT
IMM	GaN/GaAs Technology Development and Hetero- geneous Integration for Emerging mm-Wave Applications Sponsors: IMS Organizers: Guillaume Callet, UMS; Ko-Tao Lee, Qorvo ROOMS: 503-504 08:00 – 17:00	Recent advances of the GaN/GaAs technology development have enabled RF module switching at extremely high frequency that Si devices cannot withstand. It has shaped the landscape of RF industry and enabled applications in mm-wave frequency bands. In this full-day workshop, 9 talks will be presented from highly-recognized industrial leaders and technical experts across the globe. It covers the major breakthrough from the latest development of GaN/GaAs technology and integration, including 1) heterogeneous integration of GaN/GaAs MMIC, 2) exploratory RF devices for mm-wave, and 3) systems and use-cases of GaN/GaAs technologies. At the closing of the day, an interactive panel session will be conducted between speakers and audiences. It is expected that the workshop can provide a platform for the latest mm-wave technology breakthroughs and a forum to share views.
LWM	Microwave Techniques for Coexistence between 5G and Passive Scientific Systems Sponsors: IMS Organizers: Albin J. Gasiewski, Univ. of Colorado Boulder; Charles Baylis, Baylor Univ.; Dimitrios Peroulis, Purdue Univ. ROOMS: 505-507 08:00 – 12:00	Passive, scientific microwave systems perform crucial functions: providing early warning to massive populations to protect from hurricanes, winter storms, and other natural disasters, and enabling scientific understanding of astronomical phenomena. The recent addition of fifth-generation (5G) wireless into mm-wave spectral bands near those designated for these sensitive scientific observations, and expected future expansion of wireless communications to additional, higher-frequency bands, has jeopardized the fidelity of these sensing operations due to interference. However, wireless communications connects societies across the globe, and is a key driver of global economic stimulation, and as such must continue to expand while ensuring scientific measurements can continue. This workshop will overview both this challenge and new solutions at the microwave circuit and system levels to provide coexistence between active and passive spectrum-use systems. The workshop begins with specific discussions of a roadmap for developing coexistence between passive scientific and 5G wireless systems from the National Science Foundation and European Space Agency, challenges faced by passive systems, and perspectives from the commercial wireless industry. With this background, the next talks highlight microwave circuit and systems innovations that form promising solutions to this problem, including reconfigurable circuit design for 5G wireless systems. The workshop will conclude with a panel session for extensive audience interaction with all speakers.
WMK	On-Wafer mm-Wave Measurements Sponsors: IMS; ARFTG Organizers: Jian Ding, Spirit Semiconductor; Mike Geen, Filtronic; Nick Ridler, NPL; Xiaobang Shang, NPL ROOMS: 605/607 08:00 - 17:00	Accurate on-wafer S-parameter measurement plays an important role in the development of mm-wave integrated circuits for communications and electronics applications. To this end, a group of international experts in this field will share their experience on making reliable on-wafer measurements at high frequencies (eg above 100GHz). The presenters come from different backgrounds — instrumentation manufacturers, metrology institutes, end-users in industry and academia — and so provide different perspectives on this topic. The emphasis of the workshop is on sharing practical tips (ie good practice) so that attendees can subsequently implement such methods in their own workplaces. The workshop will cover topics including calibration techniques, verification methods, guides on design of custom calibration standards, instrumentation, and applications, etc. The workshop includes two panel discussions: (i) an open discussion about the challenges/opportunities/outlooks for research into on-wafer measurements in coming years; and (ii) an opportunity for attendees to describe their own on-wafer measurement problems so that these can be discussed, and hopefully solved, during the workshop.
WML	Measurement and Modeling of Trapping and Thermal Effects of GaN HEMT Microwave PA Technology Sponsors: IMS; ARFTG Organizers: Nicholas Miller, AFRL; Sourabh Khandelwal, Macquarie Univ. ROOMS: 702/704/706 08:00 - 17:00	Gallium nitride (GaN) high electron mobility transistors (HEMTs) are an excellent technology for various microwave power amplifier applications due to the underlying semiconductor's wide bandgap, high breakdown voltage and large peak electron velocity. A key bottleneck to the technology's widespread and long-term adoption into commercial and military applications is its inherent electrical reliability. The physical mechanisms of GaN HEMT electrical degradation are largely unresolved and actively under investigation. In this full-day workshop, international experts in the fields of microwave measurements, trap characterization, thermal characterization, reliability characterization, GaN HEMT nonlinear modeling, trap modeling, and TCAD modeling will present state-of-the-art research. This interactive workshop aims to inform and excite the attendees on the advances in multiple aspects of this technology. Starting with a GaN technology overview, the planned talks will inform the audience about measurement and characterization of this technology including the complex thermal, charge trapping, and long-term degradation phenomenon in these devices. The next part of the workshop covers the modeling and simulation research in GaN. Starting with an overview of modeling challenges in GaN devices, the workshop will cover the latest industry standard compact models and advances in TCAD-based modeling of GaN devices.

COLORADO CONVENTION CENTER

08:00 - 17:00 | Monday, 20 June 2022

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WMM	Hands-On Phased Array Beamforming Using Open Source Hardware and Software Sponsors: IMS Organizers: Jon Kraft, Analog Devices ROOMS: 705/707/709/711 08:00 - 12:00	Phased array communications and radar systems are finding increased use in a variety of applications. This places a greater importance on training engineers and rapidly prototyping new phased array concepts. However, both those imperatives have historically been difficult and expensive. But a recent open source offering, the ADALM-PHASER, allows real beamforming hardware to be used for education, project proposals, and product development. This workshop will introduce that offering with lectures and hands on labs covering: software defined radio (SDR), phased array beamforming (steering angle and beam formation), antenna impairments (side lobes/tapering, grating lobes, beam squint, quantization sidelobes), Monopulse tracking implementation, and simple radar algorithm design. Each of these topics will be addressed with a short lecture, followed by the participants using the ADALM-PHASER hardware to directly explore the lecture topic.
WMN	Al/ML-Based Signal Processing for Wireless Channels Sponsors: IMS Organizers: Young-Kai Chen, II-VI ROOMS: 705/707/709/711 08:00 - 12:00	Digital signal processing (DSP) is the critical element to adapt dynamic wireless propagation media and mitigate nature and man-made impairments. Today's model-based DSP techniques function well in the stationary wireless channel, which can be easily disrupted by the random events such as in-band interference, noise and non-stationary fading channels. Emerging Al/ML techniques have demonstrated unique capability to capture and mitigate these corner cases. These Al/machine learning techniques can significantly enhance the processing capability better than the legacy model-banded DSP techniques. This workshop will illustrate several recent advances in Al-ML-based signal processing techniques to mitigate impairments, such as non-stationary channel fading, interference, and noise, in wireless channels to enable robust wireless communication and radar applications.
OWM	Commercial Applications of Medical RF, Microwave and mm-Wave Technology Sponsors: IMS Organizers: Changzhan Gu, SJTU; Jessi Johnson, Altruem Consulting; Perry Li, Abbott; Pingshan Wang, Clemson Univ. ROOMS: 708/710/712 08:00 – 12:00	Systems that utilize RF, microwave and mm-wave energy are becoming increasingly important in the commercial medical device world. In the design of new medical devices, the use of high-frequency electromagnetics must be considered. For example, an implant such as a pacemaker should not require surgically-based battery replacement, but should be wirelessly rechargeable. A neurostimulator should be configurable and controllable by a phone or tablet. A vital sign sensor should allow for non-contact measurements to maximize comfort and usability. Wearable medical sensors should stream data wirelessly to a central location for display and analysis by medical professionals. These examples are just a few of the reasons why RF, microwave and mm-wave devices are of increasing importance and can be routinely found in government approved medical devices around the world. As RF, microwave and mm-wave technology rapidly advances in the academic and commercial environment, it will continue to be adapted toward medical applications in new and interesting ways. Please join our panel of industry experts for an interactive discussion about the in-roads that high-frequency approaches have made in the medical device space. Example applications include high-power RF/microwave ablation for cancer and cardiac applications, radar-based vital-sign sensing, in-body or on-body communication systems, wireless-power techniques, and cell detection and characterization. Panelists will share their perspective on both the current state-of-the-art, as well as future applications of this invaluable technology. In addition to technical content, unique considerations for the industry such as clinical study develop- ment, the regulatory approval process and the marketing of medical devices will be discussed.
WMP	Quantum RF Receivers: Using Rydberg Atoms for Highly Sensitive and Ultra Wideband Electric Field Sensing Sponsors: IMS Organizers: Chris Holloway, <i>NIST</i> ; Shane Verploegh, <i>ColdQuanta</i> ROOMS: 708/710/712 08:00 - 12:00	In the past 10 years, there has been a great push in the development of a fundamentally new International System of Units (SI) traceable approach to electric field sensing. Atom-based measurements allow for this direct SI-traceability, and as a result, usage of Rydberg atoms (traceable through Planck's constant) have greatly matured via measurement techniques and sensor head developments. Current Rydberg atom sensors have the capability of measuring amplitude, polarization, and phase of RF fields. Promising benefits of this quantum technology for RF receivers are the extremely large tuning range from DC fields to the submillimeter range, high selectivity in the instantaneous RF bandwidth from the nature of atomic transitions at each frequency choice, and the frequency-independent size of the sensor head. Applications of these sensors include SI-traceable E-field probes, voltage standards, power sensors, microwave radiometers, direction of arrival estimation, radar and communication receivers with amplitude, frequency, and phase various applications, and pathways to commercialization.

CONNECT

Wireless is available throughout the Colorado Convention Center!

SSID: IMS2022 Password: Denver22

MONDAY

RF BOOT CAMP

08:00 - 16:45 Monday, 20 June 2022 Room: 0

Room: 601-603

This one-day course is ideal for newcomers to the microwave world, such as technicians, new engineers, college students, engineers changing their career paths, as well as marketing and sales professionals looking to become more comfortable in customer interactions involving RF and Microwave circuit and system concepts and terminology.

The format of the RF Boot Camp is similar to that of a workshop or short course, with multiple presenters from industry and academia presenting on a variety of topics including:

- The RF/Microwave Signal Chain
- Network Characteristics, Analysis and Measurement
- Fundamentals of RF Simulation
- Impedance Matching Basics
- Spectral Analysis and Receiver Technology
- Signal Generation
- Modulation and Vector Signal Analysis
- Microwave Antenna Basics
- RFMW Application Focus

This full-day course will cover real-world, practical, modern design and engineering fundamentals needed by technicians, new engineers, engineers wanting a refresh, college students, as well as marketing and sales professionals. Experts within industry and academia will share their knowledge of: RF/Microwave systems basics, simulation and network design, network and spectrum analysis, microwave antenna and radar basics. Attendees completing the course will earn 2 CEUs. Course outline and speaker bios can be found at ims-ieee.org and on the mobile app.

IEEE FELLOWS

CLASS OF 2022

THE IEEE GRADE OF FELLOW is conferred by the Board of Directors upon a person with an extraordinary record of accomplishments in any of the IEEE fields of interest. The total number selected in any one year does not exceed one-tenth of one percent of the total voting Institute membership. The accomplishments that are being honored have contributed importantly to the advancement or application of engineering, science and technology, bringing the realization of significant value to society. Fellow grade is effective 1 January 2022. Fellows will be recognized at the IMS Plenary Session tonight at 17:30-19:00 in the Four Seasons Ballroom.

EVALUATED BY MTT-S				
Dominique Baillargeat	for contributions to developments of nanomaterials for RF packaging and sensors			
James Buckwalter	for contributions to high-efficiency millimeter-wave power amplifiers and optical transceivers in SOI technologies			
Wenquan Che	for contributions to planar transmission line structures for microwave passive components			
Alessandra Costanzo	for contributions to nonlinear electromagnetic co-design of RF and microwave circuits			
Apostolos Georgiadis	for contributions to designs of RF energy harvesting circuits			
Jeffrey Hesler	for contributions to development of terahertz components and instrumentation			
Slawomir Koziel	for contributions to modeling and optimization of microwave devices and circuits			
Moriyasu Miyazaki	for leadership in developments of airborne active-phased-array radars and satellite communication microwave subsystems			
Anh-Vu Pham	for contribution to organic packaging technologies			
Christopher Rodenbeck	for contributions to radar microsystems for ultrawideband and millimeter-wave applications			
Daniel van der Wiede	for contributions to ultrafast terahertz electronics and biomedical applications of microwave technologies			
Christian Waldschmidt	for contributions to millimeter wave automotive radar sensors			
Anding Zhu	for contributions to behavioral modeling and digital predistortion of RF power amplifiers			
EVALUATED BY OTHER IEEE SOCIETIES/COUNC	CILS			
Hongsheng Chen	for contributions to electromagnetic metamaterial and invisibility cloak			
Tommaso Isernia	for contributions on antennas synthesis and inverse scattering problems			
Mikko Valkama	for contributions to physical layer signal processing in radio systems			
Xiuyin Zhang	for contributions to the design of filtering antennas			
Jiang Zhu	for contributions to antenna design for wireless communications			

T RELDAN An Abington Reldan Metals Company

Reldan: Precious Metal Refining Essential for Modern Life

We recover precious metals from end-of-life materials and contribute to a closed loop system for manufacturing new products essential for everyday life.

Reldan's *Intelligent Refining*[™] Maximizes Value, Sustainably

Fortune 500 manufacturers rely on our metallurgy and recovery expertise and innovative solutions to meet any global processing and refining challenge while protecting the environment.

Reldan Protects Against Brand Risk and Provides Peace of Mind

Our customers rely on our advanced precious metals refining methods and value chain security to manage environmental risk.

Certified Proof: Reldan maintains over a dozen certifications and accreditations assuring our customers that we meet the strictest industry standards for safety and environmental stewardship.

Learn More: 800-764-9222

9222 www.Reldan.com

Sales@reldan.com

TECHNICAL LECTURE

LECTURE TITLE

Electromagnetic Fundamentals Underlying Health Impact of Millimeter-Wave Radiations Speaker: Abbas Omar, Univ. of Magdeburg

LECTURE ABSTRACT

Millimeter Wave mobile communication (5G and beyond) has been associated with much lower radiation power and much shorter communication range. Millimeter Wavelengths suffer from very strong attenuation in water-rich substances limiting penetration into biological objects (e.g., human and animal bodies and plants) to just a few millimeters. Deeper inside the body the intensity is negligible making for greater safety compared to early mobile standards (3G and 4G). However, the safety of millimeter-wave radiation for 5G and beyond remains a public concern.

This Technical Lecture aims to comprehensively review the relevant electromagnetic fundamentals underlying the wave-matter interaction involved in any eventual health hazard which might be associated with millimeter-wave radiation. Basic related aspects include the following:

- Direct health hazards must involve either chemical reactions or thermal/mechanical destruction of cells/tissues. This must be accompanied by energy transfer from the electromagnetic wave to the biological substances.
- Indirect hazards include overloading the biological mechanisms involved in the body thermoregulation.
- Thermal effects involve rise of temperature, an increase in the magnitude of atomic/molecular lattice vibrations. Chemical reactions (e.g., burning) will only occur if the temperature increase exceeds a certain limit. Otherwise, the rise is reversible, regulated to steady state by the blood circulation within the body.
- Non-ionizing waves are wavelengths that are much larger than the atomic/molecular scale, a continuous spatial distribution of the wave is an adequate mathematical representation. The wave power-density is described by the Poynting vector, and the power transfer from the wave to the biological substances can be calculated with high precision using the concept of constitutive parameters (conductivity, permittivity, and permeability). Millimeter Waves and even Tera-Hertz Waves belong to this category.
- Ionizing radiation has wavelengths comparable to the interatomic or intermolecular spaces and an electromagnetic wave quantization
 approach makes sense. Wave-matter interactions can be explained using the discrete representation of the waves, photons, which are
 ensembles of energy packages highly localized in time and space. A single photon carries energy proportional to its frequency which,
 e.g., can be fully transferred to and result in electrical destruction of a molecular bond. Ionizing radiation only occurs at frequencies
 much higher than that of ultraviolet light and therefore is not applicable to the millimeter-wave case.
- Use of a photon representation to describe Millimeter Waves would require the photon spatial extent to be of the same order of
 magnitude as the wavelength and a photon collision would necessarily involve millions of atoms/ molecules (as if swimming in it). A
 single chemical bond could not absorb the entire photon energy.

RFIC PANEL SESSION

12:00 - 13:30 Monday, 20 June 2022

Room: 2C-3C

Industry vs. Academia: Who is Leading Whom?

PANEL ORGANIZERS AND MODERATORS: Hossein Hashemi, Univ. of Southern California; Oren Eliezer, Ambig

PANELISTS:

Andreia Cathelin, STMicroelectronics; Vadim Issakov, Technische Universität Braunschweig; Waleed Khalil, The Ohio State Univ.; Ali Niknejad, Univ. of California, Berkeley; Joy Laskar, Maja Systems; Stefano Pellerano, Intel **ABSTRACT:** This panel debates the roles of academia and industry in shaping the future of RFIC design. Given the increased complexity of modern RF integrated systems and the need for well trained RFIC engineers, the panel raises the question of who should lead RFIC research. If the industry is to take the lead, what is the role of universities and who should pay for training graduate students? Should academics move to other research domains? What should be done to prevent them from being lured away from universities and into financially rewarding industry careers? Are there fundamental RFIC research challenges that academics can still tackle for the next generation RF systems given the increasing complexities in design and fabrication of advanced RFICs?

The panel, formed of industry experts, university professors and those who crossed the line between academic and industry careers, will look at past, current and future RFIC research, education, and support models with the audience's participation.

THREE MINUTE THESIS

Room: 4D-4F

In its sixth year, the IMS2022 3MT competition is designed to stimulate interest in the wide range of applications of microwave technology. Contestants will make a presentation of three minutes or less, supported only by one static slide, in a language appropriate to a non-specialist audience. The winners of the 3MT competition will receive their prizes at the IMS2022 Closing Session on Thursday, 23 June 2022.

ORGANIZERS/CO-CHAIRS: John Bandler, Senior Advisor				
Aline Eid, 2022 3MT® Co-Chair	Jimmy Hester, 2022 3MT® Co-Chair			
Erin Kiley, Member	Daniel Tajik, Member			
THIS YEAR'S FINALISTS ARE:				
Which Way Is Up? Tu1C-1 Ajibayo Adeyeye, Georgia Institute of Technology You Are Close! Set Sail with the Crew SYNC. We1D-3 Víctor Ángel Ardila Acuña, Universidad de	Towards Detecting EM Attack on Silicon ICs by Simple On-chip Circuit Components We3C-3 Archisman Ghosh, Purdue Univ. Efficient THz Generator			
Cantabria Automotive Radars: It's the Journey that Matters, Not the Destination. RMo4C Ioanna Apostolina, Univ. of Pavia	TUIF1-8 Alexander Possberg, Univ. of Duisburg-Essen More Than Just Noise—Making Bits Fly Tu4D-3 Florian Probst, Friedrich-Alexander-Universität Erlangen-Nürnberg			
Lowest Rate Operations at the Spectral "Beach Front Property" Th2B-4 Gokhan Ariturk, <i>Univ. of Oklahoma</i>	Ultrafast Optical Analysis Tool for Microwave Signals Th1C-4 Connor Rowe, Institut National de la Recherche			
Cool it! Minimizing Noise in Microwave Readout Amplifiers Tu3E-3 Shai Bonen, Univ. of Toronto	Scientifique Detective Microwave in Pursuit of Any Microplastic Clue To 0.4 Maria Chafti Darkh Uking (Wetadae			
Making Cyclists Visible: A Safety Vest for Microwaves. We2F-2 Tobias T. Braun, Ruhr Univ. Bochum	Tu4B-4 Maziar ShafieiDarabi, Univ. of Waterloo Flexible Electronics Help Our World Lose Weight WEIF2-3 Xiaolin Wang, Tokyo Institute of Technology			
Integrable Energy Harvesting Tu3C-2 Nathan Chordas-Ewell, SUNY Buffalo	Using Quantum Computing to Solve Large Electromagnetic Equations			
Saving Your Battery Life We1E-2 Chenhao Chu, Univ. College Dublin	TUIF1-3 Louis Zhang, Univ. of Toronto Digital mmWave Radar, the Infrastructure of the			
Low-Power Electronics for Future Quantum Computers. We4D-2 Sayan Das, Univ. of Massachusetts, Amherst	Digital Era Mo3A-4 Wen Zhou, Univ. of Minnesota			
Overcoming a World Without Translators Th2A-2 Ricardo Figueiredo, Universidade de Aveiro				
Safer Intersections for Our Phones				

Tu4B-1 Alden Fisher, Purdue Univ.

Devices running low? Stop by the charging station on the Grand Concourse near conference room 401!

Sponsored By:

ROHDE&SCHWARZ Make ideas real

<u>16:00 – 17:30</u> Monday, 20 June 2022

Mile High Ballroom Pre-Function Space

Join us before the IMS Plenary Session for the Industry Showcase where selected speakers will present their work.

PAPER TITLE	SPEAKER	
A W-band, 92-114 GHz, real-time spectral efficient radio link demonstrating 10 Gbps peak rate in field trial We2G-2	Mikael Horberg, Ericsson	
Fast Simultaneous Characterization of all Analog Phased Array Elements Th1F-4	Michael Foegelle, ETS-Lindgren	
15 to 72 GHz Closed-Loop Impairment Corrected mm-Wave Delay_x0002_ Locked IQ Modulator for 5G Applications We3G-4	Isaac Martinez, Keysight Technologies	
Dynamically Reconfigurable Metasurface Antennas for Mobile Connectivity in 5G Non-Terrestrial Networks Th3E-4	Ryan Stevenson, Kymeta Corporation	
Rydberg Atom Electrometry: a Near-Field Technology for Complete Far-Field Imaging in Seconds Th1F-2	James Shaffer, Quantum Valley Ideas Laboratory	
A 1024-Element Ku-Band SATCOM Phased-Array Transmitter With 39.2-dBW EIRP and ± 530 Beam Scanning Th2F-6	Jui-Hung Chou, <i>Rapidtek</i>	
Multi-channel Schottky-gate BRIDGE HEMT Technology for Millimeter-Wave Power Amplifier Applications Tu4E-4	Keisuke Shinohara, Teledyne Scientific	
A Fully-Integrated CMOS System-on-Chip Ku Band Radiometer System for Remote Sensing of Snow and Ice Th3F-3	Adrian Tang, UCLA/JPL	

IMS PLENARY SESSION 17:30 - 19:00

Monday, 20 June 2022

Four Seasons Ballroom

A Quantum Technology Landscape

IMS KEYNOTE SPEAKER:

Prof. Dana Z. Anderson, ColdQuanta, Inc. and The JILA Institute & Dept. of Physics, Univ. of Colorado

ABSTRACT: The revolution promised by quantum computing sits on the horizon but in fact is just one of many 'revolutions' that will be enabled by quantum technologies. Extracting quantum behavior typically means working with systems that are cold: a millionth of a degree above absolute zero temperature might seem terribly cold, but it is now routinely achieved with ensembles of atoms using laser cooling and related techniques. Clocks utilizing ultracold atoms have demonstrated performance that is more than 10,000 times more precise than today's world timekeepers. Consider timekeeping as the harbinger of more quantum things to come —technology poised to impact timekeeping, sensing, communications, networking, in addition to computing. This talk centers specifically on quantum technology based on atoms, whose quantum character is being utilized in electromagnetic field detection (particularly RF), inertial sensing for navigation, and numerous other applications, not to mention new devices, such as the atomtronic transistor. This talk will emphasize the critical need for microwave engineering to design and control these new quantum-enhanced circuits. One hears a lot about "quantum" these days: I will explain many of the commonly used terminology such as "superposition" and "entanglement" to describe what is meant by the phrase "quantum advantage" in practical terms.

BIOGRAPHY: Prof. Dana Z. Anderson received his Ph.D. in quantum optics working under Prof. Marlan Scully. His thesis research centered on fundamental principles of ring laser gyroscopes. As a postdoctoral fellow at Caltech he carried out work on the prototype laser interferometer gravitational observatory (LIGO). He is currently a Fellow of the JILA Institute at the University of Colorado and a Professor of the Department of Physics and the Department of Electrical, Computer and Energy and Engineering at the University. He is an applied physicist working in the areas of quantum optics, atomic physics, and precision measurement. His research includes the development of atom based inertial sensors, quantum communications systems, quantum computing, quantum emulators, and atomtronics (the atom analog of electronics). Prof. Anderson has published over 100 refereed papers, holds several patents, and has received several awards including a Presidential Young Investigator award, a Sloan Foundation Fellowship, a Humboldt Research Award, the Optical Society of America's R.W. Wood Prize for his pioneering work on optical neural networks, the CO-LABS Governor's Award for foundational contributions ultracold matter technology, and the Willis Lamb Prize for Excellence in Quantum Optics and Electronics.

Prof. Anderson is also Founder and CTO of ColdQuanta, Inc., a company that develops and manufactures cold and ultracold matter-based quantum technology covering a broad spectrum of systems, from clocks to quantum computers, including a system currently operating on the International Space Station under NASA's Cold Atom Laboratory (CAL) mission.

IMS KEYNOTE SPEAKER:

Gregory E. Edlund, Lockheed Martin Space Systems Company

ABSTRACT: Space is becoming the high ground for many missions and applications that are revolutionizing the way we live. The space industry is in the midst of dramatic advancement of applications, markets, and demand supporting global situational awareness (including weather, climate and earth science), communications, missile defense, positioning navigation and timing, and exploration. This mandates small, low weight, low power consumption electronics, with a continual push for lower cost and reduced development and test schedules. For this unprecedented challenge, Lockheed Martin is introducing next-generation space vehicles and payloads that include advanced multi-beam Electronically Steerable Arrays (ESA), multi-channel System-in-Package (SiP) and signal-processing RF units accentuated with flexible, advanced digital signal processors. Microwave engineering is at the forefront of these applications and this talk will address the challenges associated with operating in the harsh environment of space and the development and testing of custom MMICs and new RF Photonic Integrated circuits to support these applications.

BIOGRAPHY: Greg Edlund is the Vice President and Chief Architect at Lockheed Martin Space Systems Company. He is responsible for understanding the mission priorities and industry landscape to set the vision and strategy for enterprise subsystem and product roadmaps. Prior to his current role Greg led the RF Payload Center of Excellence at Lockheed Martin Space Systems Company. Greg brings over 38 years of leadership and experience working at The Aerospace Corporation, as an independent Consultant, at Northrop Grumman, and at Lockheed Martin. Prior to Lockheed Martin he was with Northrop Grumman Aerospace Systems where he worked in program management, new business, and engineering space solutions across DoD, commercial, civil and restricted efforts. He also supported integrated air/space solutions, and the development and execution of several airborne platforms.

Prior to Northrop Grumman, Greg worked as an independent consultant developing business and capture strategies for Commercial, Military and Restricted space business areas. Greg also consulted with the US government focused on advancing the future DoD, civil and restricted communications architectures and specifically the initiation of the TSAT program. Greg started his career with The Aerospace Corporation, where he supported the DoD, civil and national space programs. He managed the MILSATCOM advanced plans group, a communications subdivision directorate and opened The Aerospace Corporation's Washington, DC Field Office.

IMS WELCOME RECEPTION

19:00 - 21:00 Monday, 20 June 2022

Denver Performing Arts Complex in the Sculpture Park and Galleria

IMS2022 starts with a welcome event on Monday for all attendees, which will be hosted at the Denver Performing Arts Complex in the Sculpture Park and Galleria immediately following the IMS2022 Plenary Session. Join us for a beverage in the beer garden as we kick off the week!

Sponsored By:

RFIC TECHNICAL SESSIONS 08:00 – 09:40 Tuesday, 21 June 2022

1A-1C	1D-1F
Tu1A: mm-Wave and Wide Band Low-Noise	RTu1B: Efficiency Enhancement Techniques
MOS Amplifiers	for Power Amplifiers
hair: Hao Gao, Silicon Austria Labs, Austria	Chair: SungWon Chung, <i>Neuralink, USA</i>
o-Chair: Marcus Granger-Jones, <i>Qorvo, USA</i>	Co-Chair: Alexandre Giry, <i>CEA-Leti, France</i>
Tu1A-1: 28GHz Compact LNAs with 1.9dB NF Using	RTu1B-1: A 38GHz Deep Back-Off Efficiency
olded Three-Coil Transformer and Dual-Feedforward	Enhancement PA with Three-Way Doherty Network
echniques in 65nm CMOS	Synthesis Achieving 11.3dBm Average Output Power
. Huang, Tsinghua Univ.; H. Jia, Tsinghua Univ.;	and 14.7% Average Efficiency for 5G NR OFDM
I. Deng, Tsinghua Univ.; Z. Wang, RITS; B. Chi,	X. Zhang, Rice Univ.; S. Li, Samsung; D. Huang,
singhua Univ.	Samsung; T. Chi, Rice Univ.
Tu1A-2: 22–33GHz CMOS LNA Using Coupled-TL	RTu1B-2: A Polar Doherty SCPA with 4.4° AM-PM
eedback and Self-Body Forward-Bias for 28GHz 5G	Distortion Using On-Chip Self-Calibration Supporting
ystem	64-/256-/1024-QAM
S. Lin, National Chi Nan Univ.; KS. Lan, National Chi	H. Tang, UESTC; H.J. Qian, UESTC; B. Yang, UESTC;
Ian Univ.	T. Wang, UESTC; X. Luo, UESTC
Tu1A-3: A Capacitor Assisting Triple-Winding	RTu1B-3: A Compact Single Transformer Footprint
ransformer Low-Noise Amplifier with 0.8–1.5dB NF	Hybrid Current-Voltage Digital Doherty Power
–12GHz BW ±0.75dB Ripple in 130nm SOI CMOS	Amplifier
Zou, Fudan Univ.; H. Xu, Fudan Univ.; Y. Wang, Fudan Iniv.; W. Liu, Fudan Univ.; T. Han, CASIC IT Academy; . Wang, Archiwave Microelectronics; N. Li, Archiwave ficroelectronics; M. Tian, CASIC IT Academy; W. Zhu, ASIC IT Academy; N. Yan, Fudan Univ.	J. Lee, Georgia Tech; D. Jung, Georgia Tech; D. Munzer, Georgia Tech; H. Wang, Georgia Tech
Tu1A-4: An LNA with Input Power Match from 6.1 to	RTu1B-4: An Eight-Core Class-G Switched-Capacitor
8.6GHz, the Noise-Figure Minimum of 1.9dB, and	Power Amplifier with Eight Power Backoff Efficiency
mploying Back Gate for Matching	Peaks
1. Radpour, Univ. of Calgary; L. Belostotski, Univ. of	B. Qiao, Oregon State Univ.; A.V. Kayyil, Oregon State
algary	Univ.; D.J. Allstot, Oregon State Univ.

JOIN US FOR Sweet Treat Treat Tuesday AT 12:00!

Enjoy a "Sweet Treat" in the company of attendees, exhibitors, and colleagues on the IMS Show Floor.

Sponsored By:

NEW FOR IMS2022! THE SYSTEMS FORUM

A New Initiative at IMS2022 Highlighting MTT Activities of Interest to System Engineers

- Additional outlet for system-level research
- Tap into areas of local activity (Denver: defense, 5G/6G, quantum, phased arrays, etc.)
- Draw in additional participants

The Systems Forum will overlay the regular technical program by arranging technical content along thematic "Days:"

Activities will be related to the thematic topic areas

- Panel Sessions
- Focus Sessions
- IEEE Microwave Magazine overview papers
- Interactive Forum Plenary Posters with well-known presenters
- Receptions

A small gear symbol on an activity denotes it is part of the Systems Forum. Systems Forum activities by day are shown below.

Activity	Tuesday June 21	Tuesday June 21 Tuesday June 21 Wednesday June 22		Thursday June 23	
	Conn. Future Summit	Quantum Systems Day	Radar & Aerospace Day	Phased Arrays & OTA Day	
AM1:	Keynole: Smart Cities and Our Connected Future	Keynole: Engineering Quantum Systems of Superconducting Qubits	Keynole: Recent Radar Advances and Their Impact	Keynote: Calibrating RF/Microwave Front Ends in Mutlichannel Receiver and Transmitter Systems	
08:00- 09:40	Session 1: The Connected Future	Tute Focus Session: Microwave Technologies for Quantum-System Integration	We1F Focus Session: Rodar from Space to Ground (and Below) - The synergy between commercial, government, and metrology applications	TH1F Focus Session w/ARFTG: Efficient Characterization and Test of Phased Array	
AM2: 10:10- 11:50	Session 2: Spectrum, Standards and Innovation Fireside Chat: Non-Terrestrial Networks: Cellular in space			Th2F: Antenna Systems for SG and SATCOM Applications	
Lunch 12:00- 13:30	Panel Session w/RFIC: Race to the Next G – Ride the mmWave or Wave Goodbyel	Panel Session: This is the Right Way o Architect the Microwave Control for a Quantum Computer! Panel Session: Small Satellites and Constellations: Who Will be the Winners of the New Race to Space?		Panel Session w/ARFTG: Modern Phased Arrays and OTA Testing: A Design or a Measurement Challenge?	
PM1: 13:30-	Session 3: Next-Generation	Tu3E Focus Session: Cryagenic Measurement and	We3f Focus Session: Cognilive Radar	Th3F Focus Session: Advances In Integrated Transceivers for beamfarming and RADAR Applications	
15:10	Technologies	Characterization for Quantum Information Systems		Phased Arrays and OTA Reception at the Interactive Forum: Plenary Poster, Phased Array Posters	
PM2:	Session 4: 6G Challenges Panel Session: "Will flexibility and	Quantum Reception at the	We4F: Advanced Radar Imaging and Signal Processing		
15:40- 17:00	digital bottlenecks break 6G# Connected Future Summit Reception (17:00-17:45)		Radar Reception w/Interactive Forum: Planary Poster, Rodar Posters, Hardwore demos	IMS2022 Closing Session	

IMS TECHNICAL SESSIONS

08:00 - 09:40 Tuesday, 21 June 2022

Colorado Convention Center

Microway	ve Field, Device & Circuit Techniques Passive	e Components	Active Components	Systems & Applications	Emerging Technologies & Ap	oplications	Focus & Special Sessions	
	401-402	4	03-404	5	01-502		503-504	
	Tu1A: Advances in Synthesis and Design Techniques for Non-Planar Filters	Computationa	es in Numerical and al Techniques for ad Design	Tu1C: Advance Technologies	es in RFID	Tu1D: Adv Synthesis	anced Frequency	
	Chair: Simone Bastioli, RS Microwave Co-Chair: Antonio Morini, Università	Simulation and Design Optimization Dedicated to Tapan Sarkar		at Manoa	Chair: Victor M. Lubecke, Univ. of Hawaii at Manoa Co-Chair: Alessandra Costanzo.		Chair: Amit Jha, <i>Qualcomm</i> Co-Chair: Jahnavi Sharma, <i>Intel</i>	
80	Politecnica delle Marche	of Liberal Arts	, Massachusetts Colleg E. Rayas-Sánchez, ITES	ie Università di Bolo				
08:00	Tu1A-1: New Triple-Resonance Configurations Using Stubbed Waveguide Dual-Mode Cavities	for Time-Reverse Reconstruction	magnetic Time Kurtos al Source with Band-Limited		ong-Range Dual Rotman larmonic mmID's for 5G/ oplications	Using Trans	ow Phase Noise 28GHz VCO former-Based Q-Enhanced dance Converter	
08:10	Simone Bastioli, <i>RS Microwave;</i> Richard Snyder, <i>RS Microwave</i>	Fuzhou Üniv.; J. l	usie Univ.; Z. Chen, .i, Fuzhou Univ.; J. Cai, C. Liang, Southeast Un	Georgia Tech; A. J. Hester, Athera	eorgia Tech; A. Adeyeye, Eid, Georgia Tech; xon; M.M. Tentzeris,	M. Chahard M.A. Mokri, S. Mohapat	e, Washington State Univ.; ori, Washington State Univ.; Washington State Univ.; ra, Washington State Univ.; nington State Univ.; D. Heo, State Univ.	
08:20	Tu1A-2: Synthesis of Extracted-Zero Filters Giuseppe Macchiarella, Politecnico di	Matrix Solver Us Nyström Bounda	ix Accelerated Direct sing Chebyshev-Based ary Integral Equation		ent Algorithm to perational Range of dy UHF RFID Systems	Generation Operation E	icosecond Ultrafast Pulse Featuring Switchable etween Monocycle and	
03:30	Milano - Dipartimento di Elettronic; Stefano Tamiazzo, CommScope; Simone Bastioli, RS Microwave; Richard Snyder, RS Microwave R. Gholam V. Okhmat		uthern California; Technical Univ.; Iniv. of Manitoba; Itor Graphics; Univ. of Manitoba; of Southern California		Univ.; K.Y. Kapusuz, ogier, Ghent Univ.; Ghent Univ.		ses Polytechnique Montréal; echnique Montréal	
08:40	Tu1A-3: Novel Synthesis for Generalized Strongly Coupled Resonator Triplet Filters with Self-Suppressed Spikes	Uniform Asympt Rapid and Accu	Geometrical Optics an totic Physical Optics fo rate Practical GRIN Le	r Chipless RFID Ta	Recognition Using Ig Held in Hand 747); N. Barbot, <i>LCIS (EA</i>	Divide-by-Tl	/-Band Wide Locking Range nree Injection-Locked Divider in 40nm CMOS	
08:50	Y. Zeng, CUHK; Y. Yang, Xidian Univ.; M. Yu, CUHK	Design W. Wang, Univ. o Univ. of Notre Da	f Notre Dame; J. Chisu me	3747); E. Perret,		HC. Chang FC. Chang	s, National Tsing Hua Univ.; , National Tsing Hua Univ.; National Tsing Hua Univ.; lational Tsing Hua Univ.	
09:00	Tu1A-4: Synthesis Guidelines for Acoustic Wave Standalone Ladder	Tu1B-4: Applica for Design Reuti	tions of Double Mapp liization	Bidirectional No	nlinear RFID		ybrid Pulling Mitigation for NB-IoT Transmitter	
09:10	Filters with Dual-Band Responses L. Acosta, Univ. Autònoma de Barcelona; E. Guerrero, Univ. Autònoma de Barcelona; J. Verdú, Univ. Autònoma de Barcelona; P. de Paco, Univ. Autònoma de Barcelona	G. B., IIT Roorked Waterloo	e; R.R. Mansour, <i>Univ. c</i>	P. Pahlavan, Univ	. <i>of Florida</i> ; N. Ebrahimi, Shah Zaib Aslam, <i>Univ. of</i>	Y. Wang, SU Chou, Realt Realtek Sen Realtek Sen Realtek Sen	am, SUTD; H. Liu, SUTD; TD; K.S. Yeo, SUTD; CI. ek Semiconductor; HY. Tsai, niconductor; KH. Liao, niconductor; WS. Wang, niconductor; KU. Chan, niconductor; YH. Lin, Realtek ctor	
09:20	Tu1A-5: Synthesis of the Double-Ladder Topology with Arbitrary Bandwidths and Dual-Band Response	Behavioral Mod	Simulation Through el with Embedded for the Prediction of t r Amplifier		ed Two-Way for Battery-Free rs: SWIPT with IM3		Approach for Compensating Mixing and Close-In Phase rtion	
09:30	J. Verdú, Univ. Autònoma de Barcelona; M. Faura, Univ. Autònoma de Barcelona; L. Acosta, Univ. Autònoma de Barcelona; E. Guerrero, Univ. Autònoma de Barcelona; C. Caballero, Univ. Autònoma de Barcelona; P. de Paco, Univ. Autònoma de Barcelona	Performances a S. Hernandez, Al E. Gatard, Wupa Engineering; W. S	It the Design Stage MCAD Engineering; tec; C. Maziere, AMCAL Saabe, AMCAD E. Lavergne, Wupatec;	Y. Qaragoez, KU KU Leuven; D. So	Leuven; S. Pollin, chreurs, KU Leuven	W. Namgool	ng, SUNY Albany	
09:40								

IMS TECHNICAL SESSIONS

Microwave Field, Device & Circuit Techniques **Passive Components**

4D-4F Tu1E: Microwave

Technologies for Quantum-System Integration

Chair: Nizar Messaoudi, Keysight Technologies Co-Chair: Sorin P. Voinigescu, Univ. of Toronto

8

ë

08:10

08:20

03:30

08:40

08:50

09

ë

09:10

Tu1E-1: Keynote: Engineering Quantum Systems of Superconducting Qubits

William Oliver, Massachusetts Institute of Technology

Tu1E-2: Superconducting Microwave Interconnect Technologies for Quantum and Cryogenic Systems

M.C. Hamilton, Auburn Univ.;

B. Yelamanchili, Auburn Univ.; A. Shah, Auburn Univ.; S.E. Peek, Auburn Univ.; S. Bankson, Auburn Univ.; C.C. Tillman, Auburn Univ.

Tu1E-3: Prospects for Parametric Amplifiers in Large-Scale Superconducting Quantum Computing

J. Aumentado, NIST

Tu1E-4: High-Fidelity RF/Microwave-**Based Universal Control of Trapped Ion Oubits**

R. Srinivas, NIST; S.C. Burd, NIST; H.M. Knaack, NIST; R.T. Sutherland, LLNL; A. Kwiatkowski, NIST; S. Glancy, NIST; E. Knill, NIST; D.J. Wineland, NIST; D. Leibfried, NIST; A.C. Wilson, NIST; D.T.C. Allcock, NIST; D.H. Slichter, NIST

09:20

09:3(

09:4(

Tuesday, **RFIC** STUDENT FORUMS 10:10 - 11:00 21 June 2022 **Student Industry CHIPS Forum**

ORGANIZER: Jennifer Kitchen, Arizona State Univ.

08:00 - 09:40

Active Components

PANELISTS:

Alessandro Piovaccari, Universit. di Bologna; Gary Xu, Samsung Research America; Jeremy Dunworth, Qualcomm; Andreia Cathelin, STMicroelectronics; Shahriar Shahramian, Nokia Bell Labs: Nadine Collaert, imec

The snowball effect of the COVID-19 pandemic has led to an alarming global shortage of integrated circuits chips and severe disruptions in almost any product that relies on the semiconductor supply chain. On the other hand, we have witnessed radically increasing public attention and government/industry investments on semiconductor technologies, as demonstrated by the CHIPS Act in the EU and USA. While the semiconductor industry may envision an explosive growth in the next decade, tech industry leaders are struggling to attract and retain talent.

This student panel event invites industry leaders to present the new technology trends in the semiconductor industry and their Big-Picture visions related to RFICs. The purpose of this student panel is to educate graduate and undergraduate students about the RF semiconductor industry and encourage them to join the fast-growing field of RFICs.

RFIC STUDENT FORUMS	11:05 - 11:55	Tuesday, 21 June 2022	Room: 1A-1C	
Student Entrepreneurship Forum				

ORGANIZER: Vadim Issakov, Technische Universität Braunschweig

PANELISTS:

Arun Natarajan, MixComm; Bogdan Staszewski, Equal1; Patrick Chiang, PhotonIC Technologies; Yang Xu, InnoPhase; Wouter Steyaert, Tusk IC

Startup companies emerging from cutting-edge academic research have always been an integral component of the semiconductor industry and its continuous growth. However, to many students, there is lack of education on entrepreneurship careers and what it takes to achieve a successful semiconductor startup company.

This student panel invites entrepreneurs in our RFIC community to share their startup experiences and stories. The purpose is to educate graduate students regarding entrepreneurship in the RFIC field and its associated challenges and opportunities.

Tuesday, 21 June 2022 Colorado Convention Center Systems & Applications Emerging Technologies & Applications

Focus & Special Sessions

IMS TECHNICAL SESSIONS

Tuesday, 21 June 2022

Colorado Convention Center

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 401-402 403-404 501-502 503-504 Tu2C: Advances in RF Sensors Tu2D: Advanced mm-wave Tu2A: Advances in Non-Planar Tu2B: A Retrospective and a Vision **Filter Technologies** of Future Trends in RF and Frequency Conversion and Chair: Thomas Ussmueller, Universität **Microwave Design Optimization** Control Circuits Chair: Cristiano Tomassoni, Università di Innsbruck **Dedicated to Vittorio Rizzoli** Perugia Co-Chair: Hamed Rahmani, IBM T.J. Chair: Austin Chen, Peraso, Inc. Watson Research Center Co-Chair: Xun Gong, Univ. of Central Chair: José E. Rayas-Sánchez, ITESO Co-Chair: Stephen Maas, Nonlinear Florida Technologies Co-Chair: Qi-Jun Zhang, Carleton Univ. Tu2A-1: Dual-Pol Quadruple Ridge Tu2B-1: The Synergy Between Tu2C-1: Interferometric Motion Sensing Tu2D-1: A 1-170-GHz Distributed **Resonator Filter with Transmission Optimization and Time Domain** with a Single-Channel Radar Sensor Down-Converter MMIC in a 35-nm **Electromagnetics – Past Evolution Based on a Novel Calibration-Free Phase** Gate-Length InGaAs mHEMT Zeros and Future Possibilities **Demodulation Technique** Technology M.A. Fuentes-Pascual, Univ. Politècnica de València; M. Guglielmi, Univ. W.J.R. Hoefer, Univ. of Victoria Wei Xu, Shanghai Jiao Tong Univ.; Fabian Thome, Fraunhofer IAF; Sandrine Politècnica de València: V.E. Boria. Univ. Changzhan Gu, Shanghai Jiao Tong Univ.; Wagner, Fraunhofer IAF: Arnulf Leuther, Tu2B-2: Analytical Expressions for Jun-Fa Mao, Shanghai Jiaotong Univ. Politècnica de València; M. Baquero-Fraunhofer IAF **Field-based Response Sensitivity** Escudero, Univ. Politècnica de València Analysis and Their Application in **Microwave Design and Imaging** Natalia Nikolova, McMaster Univ.; 10:30 Romina Kazemivala, McMaster Univ. Tu2A-2: Dual-Band Filters Based on Tu2D-2: A 27-57GHz Down-Conversion Tu2C-2: A Noise-Immune Motion Sensing Technique with Low-IF CW **Dual-Mode Ellipsoidal Cavities Mixer with Bulk Injection Technique** Radars E. López-Oliver, Università di Perugia; Q. Dong, Zhejiang Univ.; L. Qiu, Zhejiang C. Tomassoni, Università di Perugia J. Liu, SJTU; F. Tong, SJTU; C. Gu, SJTU; Univ.; S. Wang, Zhejiang Univ.; H. Gao, J. Mao, SJTU Zhejiang Univ.; K. Zhao, Zhejiang Univ.; 10:40 Z. Qian, Zhejiang Univ.; J. Chen, Zhejiang Univ.; Y.-C. Kuan, NYCU; Q.J. Gu, Univ. of Tu2B-3: EM-Driven Tolerance California, Davis; C. Song, Zhejiang Univ.; **Optimization of Compact Microwave** Z. Xu, Zhejiang Univ. **Components Using Response Feature** Surrogates A. Pietrenko-Dabrowska, Gdansk Univ. of 10:50 Technology; S. Koziel, Reykjavik Univ.; Tu2A-3: Compact Ultra-Wideband Cavity J.W. Bandler, McMaster Univ.; J.E. Tu2C-3: Vibration Sensing Using Tu2D-3: An E-Band Subradix Active Filter Based on Suspended Ceramic Resonators in Additive Manufacturing Rayas-Sánchez, ITESO **Doppler-Modulated Chipless RFID Tags** Phase Shifter with <0.69° RMS Phase Error and 16dB Attenuation in 28nm A. Azarfar, LCIS (EA 3747); N. Barbot, CMOS P. Vallerotonda, RF Microtech; F. LCIS (EA 3747); E. Perret, LCIS (EA 3747) Tu2B-4: Surrogate-Based Design and Cacciamani, *RF Microtech*; L. Pelliccia, *RF Microtech*; C. Tomassoni, *Università di* K. Zhao, Zhejiang Univ.; L. Qiu, Zhejiang Univ.; J. Chen, Zhejiang Univ.; Q. Dong, **Tuning Methods for RF/Microwave** ë **Devices** Perugia; G. Cannone, SIAE Zhejiang Univ.; Y.-C. Kuan, NYCU; Q.J. Gu, MICROELETTRONICA; V. Tornielli di Y. Yu, SUSTech; Z. Zhang, SUSTech; Univ. of California, Davis; C. Song, Crestvolant, ESA-ESTEC Zhejiang Univ.; Z. Xu, Zhejiang Univ. Q.S. Cheng, SUSTech; B. Liu, Univ. of Ğlasgow; Y. Wang, Univ. of Birmingham Tu2A-4: 3D-Printed Compact Waveguide Tu2B-5: Recent Advances and Future Tu2C-4: High Resolution Ultra-Violet Tu2D-4: A DC-50GHz DPDT Switch with Filters Based on Slanted Ridge Trends in Neuro-TF for EM Optimization **Radiation Detection Using TNT-**>27dBm IP1dB in 45nm CMOS SOI Resonators Integrated Wireless Passive Microwave F. Feng, Tianjin Univ.; Q. Guo, Tianjin Univ.; Y. Liu, Georgia Tech; J. Park, Georgia Tech; Resonator F. Romano, Università di Pavia; N. Q.-J. Zhang, Carleton Univ. H. Wang, Georgia Tech M.C. Jain, Univ. of British Columbia; Delmonte, Università di Pavia; C. Tomassoni, Università di Perugia; L. M. Alijani, Univ. of British Columbia; 2 Perregrini, Università di Pavia; M. Bozzi, B.D. Wiltshire, Univ. of British Columbia; Università di Pavia J.M. Macak, Brno Univ. of Technology; M.H. Zarifi, Univ. of British Columbia 11:30 Tu2B-6: System-Level Measurement-Tu2C-5: A Machine Learning Enabled Tu2D-5: Compact, High-Isolation **Based Design Optimization by Space** mmWave RFID for Rotational Sensing in 110-140GHz SPST and SPDT Switches Mapping Technology **Human Gesture Recognition and Motion** Using a 250nm InP HBT Process **Capture Applications** J.E. Rayas-Sánchez, ITESO; J.W. Bandler, J.S.-C. Chien, Univ. of California, Santa McMaster Univ. A. Adeyeye, Georgia Tech; C. Lynch, Barbara; J.F. Buckwalter, Univ. of 1:4 Georgia Tech; J. Hester, Atheraxon; California, Santa Barbara M.M. Tentzeris, Georgia Tech Tu2B-7: Recent Advances on Aggressive **Space Mapping Techniques for** Waveguide Filters Design and Tuning J.C. Melgarejo, Univ. Politècnica de València; J. Ossorio, Univ. Politècnica de

València; D. Rubio, Univ. Politècnica de València; S. Cogollos, Univ. Politècnica de València; M. Guglielmi, Univ. Politècnica de València; V.E. Boria, Univ. Politècnica

de València

10:10 - 11:50

11:50

MS TECHNICAL SESSIONS

10:10

10:30

10:40

10:50

11:00

11:10

11:20

11:30

11:40

Microwave Field, Device & Circuit Techniques

10:10 - 11:50 **Active Components**

Tuesday, 21 June 2022

Systems & Applications Emerging Technologies & Applications

Colorado Convention Center

Focus & Special Sessions

Tu2E: Cryogenic **Microwave Circuits for Control of Quantum Systems**

Chair: Joseph Bardin, Google, UMass Amherst Co-Chair: Luca Pierantoni, Università

Politecnica delle Marche

Tu2E-1: Josephson Junctions Based Low Temperature Superconducting Phase Shifter for X- and K-Band using MIT-LL SF05ee Process

Navjot Khaira, Univ. of Waterloo; Tejinder 10:20 Singh, Univ. of Waterloo; Raafat Mansour, Univ. of Waterloo

Tu2E-2: Cryogenic Decade-Passband Superconducting Integrated Diplexer

A.A. Babenko, NIST; G. Lasser, Univ. of Colorado Boulder; N.E. Flowers-Jacobs, NIST; J.A. Brevik, NIST; A.E. Fox, NIST; Z. Popovic, Univ. of Colorado Boulder; P.D. Dresselhaus, NIST

Tu2E-3: Cryogenic Wideband **Quadrature Hybrid Couplers Implemented in a Low Temperature Superconductor Multilayer Process**

N.K. Khaira, Univ. of Waterloo; T. Singh, Univ. of Waterloo; R.R. Mansour, Univ. of Waterloo

M. Spasaro, Aarhus Univ.; S. Bonen, Univ. of Toronto; G. Cooke, Univ. of Toronto; T. Jager, Univ. of Toronto; T.D. Nhut, Aarhus Univ.; D. Sufrà, Aarhus Univ.; S.P. Voinigescu, Univ. of Toronto; D. Zito, Aarhus Univ.

Tu2E-5: Cryogenic Compact mm-Wave Broadband SPST Switch in 22nm FDSOI **CMOS for Monolithic Quantum** Processors

T.D. Nhut, Aarhus Univ.; S. Bonen, Univ. of Toronto; G. Cooke, Univ. of Toronto; T. Jager, Univ. of Toronto; M. Spasaro, Aarhus Univ.; D. Sufrà, Aarhus Univ.; S.P. Voinigescu, Univ. of Toronto; D. Zito, Aarhus Univ.

11:50

Attention all Young Professionals (YP's)!

Whether you're still navigating your graduate studies, have just kick-started your career or have already taken your deep dive, we've got you covered! At IMS2022, you'll find a variety of events designed to take you to the peak of your microwave career:

- Step out of your niche and broaden your knowledge on microwave applications with our Industry Panel Sessions, a unique chance to discuss with the experts from a variety of fields
- Mingle with the MTT-S Publications Editors in Chief during our exclusive Editors in Chief Reception limited attendance, grab your spot!
- Network with your peers in a relaxed setting at our Networking Reception for Young Professionals
- Develop yourself with our Career and Technical Presentations

And have some fun!

Passive Components

- Join the RF Interference Fox Hunt, where you will work as a team to find RF signals hidden throughout the area
- Compete in our Cornhole Tournament
- Visit our Young Professionals Lounge to charge up between sessions, relax and find out what more we have in store for you!

Viewhouse Eatery, Bar and Rooftop	19:00 - 21:00	Tuesday, 21 June 2022
Young Professionals Recep	tion	

Sponsored By:

Panel Session: World of Radar

17:30 - 18:30

YP-Exclusive Reception with

IEEE Editors-in-Chief (Spots Limited) *

19:00 - 21:00YP Evening Reception at ViewHouse Eatery, Bar and Rooftop (Must be 21+) **

Microwaves&

Schedule of YP Events (subject to change)

Tuesday, 21 June	Wednesday, 22 June	Thursday, 23 June	
ruesuay, 21 Julie		mursuay, 25 Julie	
	YP Lounge Open		
	09:00 - 11:00	09:00 - 10:00	
	Cornhole Tournament **	How Does a Spectrum Auction	
		Work?	
		10:00 - 11:30	
		RF Interference Fox Hunt **	
	14:00 - 15:00	14:00 - 15:00	
	What is a Patent?	Impact of Globalization and	
		Remote Working on Career	
		Progression of Young Engineers	
15:00 - 16:00	15:00 - 16:00	15:00 - 16:00	
Panel Session: Your Next	Wireless Technology: From	Interplanetary Communication:	
Professional Step	Landline to xG	Communicating Off-Planet	
16:00 - 17:00			

INDUSTRY WORKSHOPS

08:00 - 17:00

Tuesday, 21 June 2022

SESSION CODE	TIME & Location	TITLE AND ABSTRACT	SPEAKER/S, AFFILIATION
IWTU1	08:00 - 9:40 Room: 205/207	24-44 GHz Up-Down Converter Design Accelerator Ecosystem mmWave is the new frontier in RF design. There are many advantages of working at these frequencies and more opportunity as more bands are opened for different applications. There are also many difficulties, especially for those that do not have a lot of experience. Richardson RFPD has made available a 24-44 GHz up-down converter design accelerator to help alleviate some of those difficulties. It can be used to help demonstrate a concept to your customer, to start your algorithm development, or as a reference design. The workshops goal is to demonstrate and to show its applications.	Larry Hawkins, Richardson RFPD
IWTU2	10:10 - 11:50 Room: 205/207	New Workflows for Integrated 5G Phased-Array Antenna System Design Advances in front-end RFIC electronics and highly integrated RF PCB designs are making it possible to adopt phased-array systems for commercial mmWave applications. This workshop explores recent developments in mmWave technology from the perspective of EM simulation, in-situ circuit simulation, phased-array synthesis, and RF PCB design. The system requirements that drive antenna/front-end architectural decisions for mmWave applications, and array configuration and generation will be discussed and the use of RF system design software for link budget analysis will be demonstrated.	David Vye, Cadence
IWTU3	13:30 - 15:10 Room: 205/207	Novel 5G Measurement Techniques in Diverse Environments 5G and emerging wireless technologies are being considered in a wide range of spectrum bands to support a significantly increased user density. With the industry's adoption of multi-user MIMO, massive MIMO, and mmWave in emerging wireless systems, several worldwide industries and standards bodies face new measurement challenges in NR OTA testing to verify products meet intended performance parameters demanded by diverse technological requirements. Applications in diverse environments, such as commercial aircraft and base stations, will be reviewed. Experts and active contributors to the 5G wireless industry standards committees will review these challenges and propose novel solutions.	Aurelian Bria, Ericsson; Dennis Lewis, Boeing; Michael Foegelle, ETS-Lindgren
IWTU4	15:40 - 17:00 Room: 205/207	Accelerated Solid State Qubit Pre-Screening Until recently, quantum engineers operating devices at milli-Kelvin temperatures are faced with the difficulties and inconveniences of long development cycles. The major bottlenecks include time-consuming wire bonding, expensive packaging processes prior to device cooldown, and long cooldown times for dilution refrigerators. This workshop presents an integrated measurement solution for Pre-Screening qubit devices, allowing quantum engineers to eliminate wire-bonding and packaging from cryogenic test processes and to provide critical qubit performance parameters at 50 mK, thus streamlining device deployment, and reducing the time for development cycles.	Nizar Messaoudi, Keysight Technologies; Jack DeGrave, FormFactor
IWTU5	13:30 - 15:10 Room: 403/404	Mixed-Mode/Differential S-Parameter Characterization At Cryogenic Temperatures For Quantum Computing Applications 2-port S-parameter characterization of wafer-level devices at cryogenic temperatures has a relatively long history; however, there has been considerably less work on differential/ mixed-mode S-parameter characterization in these environments. With the emergence of cryogenic temperature microwave systems for quantum computing, there is increasing interest in high frequency integrated circuit design with differential signaling for cold environments. Here we will discuss the instrumentation, probes, calibrations, and environmental consideration for wafer-level characterization of differential devices at cryogenic temperatures and magnetic fields.	David Daughton, Nizar Messaoudi, Suren Singh, Lake Shore Cryotronics, Keysight Technologies

STUDENT DESIGN COMPETITIONS 09:00 - 17:00

17:00 Tuesday, 21 June 2022

Room: 705/707

All attendees are invited to the annual IMS Student Design Competitions on Tuesday, 21 June 2022. Students have been busy over the past several months designing and building solutions to the challenging engineering problems presented in the six student design competitions listed below. Judges will measure the students' designs at this event to determine the winners of the various competitions. Come to this event to cheer on the students, celebrate their hard work, and learn about their innovative designs.

SESSION CODE	ТОРІС
SDC1	Design of a Self-Interference Cancellation Coupler
SDC2	Packaged C-band Filter
SDC3	VHF High-Efficiency Power Amplifier at 50MHz
SDC4	High-Efficiency Power Amplifier
SDC5	High-Sensitivity Motion Sensing Radar
SDC6	Measurement and Extraction of Device Parameters of an RF Transistor

PANEL SESSION

12:10 - 13:20 Tuesday, 21 June 2022

Room: 2C-3C

This is the Right Way to Architect the Microwave Control for Quantum Computers!

Mark Gouker, MIT Lincoln Laboratory; Vadim Issakov, Technical Univ. of Braunschweig, Germany

PANELISTS:

Joe Bardin, Univ. of Massachusetts and Google; Stefano Pellerano, Intel; Oleq Mukhanov, Seeqc; Bogdan Staszewski, Equal1.Labs Inc.; Glenn Jones, Rigetti Computing **ABSTRACT:** Precise control of the qubits is an essential, yet relatively immature, aspect in the development of quantum computers and is particularly difficult for cryogenic systems. This panel will debate the very different approaches being explored for microwave control signals of the qubits: CMOS vs. superconducting circuits; on the qubit plane vs. a higher temperature stage, etc. The panelists will describe their current approach and the path they intend to take as they scale to larger qubit circuits. The session will include participation from researchers at: Google, Intel, Seeqc, and Equal1.

IMS/RFIC JOINT PANEL SESSION12:00 - 13:30Tuesday, 21 June 2022Room: 4A-4CRace to the Next G - Ride the mmWave or Wave Goodbye!Image: Compare the second seco

PANEL ORGANIZERS AND MODERATORS:

François Rivet, Univ. of Bordeaux; Aida Vera Lopez, Intel

PANELISTS:

Khurram Muhammad, Samsung Research America; Shahriar Shahramian, Nokia-Bell Laboratories; Omar Bakr, Tarana Wireless Inc; Jon Strange, MediaTek Inc.; Emilio Calvanese Strinati, CEA LETI; Mike Noonen, MixComm Inc.; Reza Arefi, Intel **ABSTRACT:** A Millimeter-Wave (mmW) 5G promises high capacity and low latency by tapping into the wide bandwidth available in the Ka-band. Although there are practical limitations when using such band for non-lineof-sight communication as well as difficulty in realizing energy-efficient and cost-effective circuitry, mobile operators and technology companies have been making considerable investments in developing and deploying mmW equipment, while few continue to bid on the C-band and are willing to pay tens of billions for a 160MHz slice in it. Is now a good time to pause and reevaluate or is the global deployment of 5G mmW networks inevitable? What has the user experience with 5G networks been so far and what are the expectations for 6G and beyond? Do mmW mobile communications make engineering and economic sense and should we push for even higher bands (THz) in the next G? This panel of international experts from various industry sectors and academia will discuss the technical practicality and economics of 5G mmW deployment, and assess the potential for use of even higher frequency bands (D-band and above) in next generation communications.

CONNECTED FUTURE SUMMIT

08:00 - 18:00 Tuesday, 21 June 2022

Room: 505 – 507

The Connected Future Summit will review core technologies for future wireless networks along with their human and societal impacts. Topics include smart cities, connected transportation, unmanned aerial vehicles, reconfigurable devices and beamsteering, and the need for a holistic approach to 6G. Special features include a panel session on overcoming bottlenecks in 6G and a fireside chat with experts on non-terrestrial networks.

SPEAKERS:

Keynote: Dessa Bokides, NEOM

Upkar Dhaliwal, Future Wireless Technologies Joyti Sharma, Verizon Wireless Peter Burke, University of California Irvine Francesco Grilli, Qualcomm Inc. Carmel Ortiz, Intelsat Corp. Lizy Paul, Lockheed Martin Corp. Reza Arefi, Intel Corp. Khurram Muhammad, Samsung Research America Shariar Shahramian, Nokia-Bell Labs Emilio Calvanese, CEA-France Jon Strange, MediaTek Inc. Omar Bakr, Tarana Wireless Mike Noonen, MixComm Dr. Naveen Yanduru, Renesas Electronics Holger Maune, University Magdeburg Charlie Zhang, Samsung Research America Aarno Pärssinen, University of Oulu Christian Fager, Chalmers University of Technology Raghu M. Rao, AMD Xilinx Timothy O'Shea, DeepSig

Sponsored By:

To view the complete schedule please visit https://ims-ieee.org/connectedfuturesummit or reference the mobile app.

	TECHNICAL SESS	ONS 13:30 - 15:10	Tuesday, 21 June 2022	Colorado Convention Center	
owav	re Field, Device & Circuit Techniques Passive	e Components Active Components Sys	stems & Applications Emerging Technologies & Ap	Poplications Focus & Special Sessions	
	401-402	501-502	503-504	4D-4F	
	Tu3A: Reconfigurable Multi-Mode Resonators and Filters Chair: Roberto Gómez-García.	Tu3C: Rectenna and Signal Design for RF Power Transmission and Energy Harvesting	Tu3D: HF/VHF/UHF Power Amplifiers and Systems Chair: Marc Franco, <i>Qorvo</i>	Tu3E: Cryogenic Measurement and Characterization for	
	Universidad de Alcalá Co-Chair: Xun Gong, Univ. of Central Florida	Chair: Prof. Dieff Vital, The Univ. of Illinois, Chicago Co-Chair: Kenjiro Nishikawa, Kagoshima Univ.	Co-Chair: Robert H. Caverly, <i>Villanova Univ.</i>	Quantum Systems Chair: Fabio Sebastiano, Technische Universiteit Delft Co-Chair: Evan Jeffrey, Google	
13:30	Tu3A-1: Inset Resonators and Their Applications in Fixed/Reconfigurable Microwave Filters	Tu3C-1: Rectifier Circuit for 5G mm-Wave Energy Harvesting Using Capacitor Boosted Cross-Coupled	Tu3D-1: A 5 kW, 110V GaN on SiC Transistor for L Band Pulsed Applications	Tu3E-1: Measurement Techniques f Superconducting Microwave Resonators Towards Quantum Devic	
13:40	A. Widaa, <i>CAU</i> ; C. Bartlett, <i>CAU</i> ; M. Höft, <i>CAU</i>	Topology in 65nm CMOS T. Elazar, Tel Aviv Univ.; E. Shaulov, Tel Aviv Univ.; E. Socher, Tel Aviv Univ.	J. Custer, Integra Technologies; G. Formicone, Integra Technologies; J. Burger, Integra Technologies; J. Walker, Integra Technologies	Applications C.R.H. McRae, <i>Univ. of Colorado Bou</i>	
13:50	Tu3A-2: A Tunable Filter with Extended Tuning Range Based on Switched Dual	Tu3C-2: A W-Band Rectifier Design Based on GCPW	Tu3D-2: Synthesis of Broadband Differential Loading Networks for	Tu3E-2: A Cryogenic On-Chip Noise Measurement Procedure with ±1.4	
14:00	Resonance Cavities M.M. Fahmi, DRDC; D.S. Ghadri, Univ. of Waterloo; R.R. Mansour, Univ. of Waterloo	N. Chordas-Ewell, SUNY Buffalo; Z. Li, SUNY Buffalo; J.H. Choi, SUNY Buffalo; D. Ren, NXP Semiconductors; R. Wu, NXP Semiconductors	High-Efficiency Power Amplifiers R.A. Beltran, <i>Ophir RF</i>	Measurement Uncertainty F. Heinz, Fraunhofer IAF; F. Thome, Fraunhofer IAF; A. Leuther, Fraunhofe IAF; O. Ambacher, Fraunhofer IAF	
14:10	Tu3A-3: Tunable Multi-Band Non- Reciprocal Bandpass Filters D. Simpson, <i>Univ. of Colorado Boulder</i> ;	Tu3C-3: Improving Wireless Power Transfer Efficiency with DC/DC Boost Charger by Multi-Sine Excitation at 5.8 GHz	Tu3D-3: A GaN HF-Band Power Amplifier Using Class-D Topology for Jupiter Ice Penetrating Radar	Tu3E-3: Cryogenic Characterization of the High-Frequency and Noise Performance of SiGe HBTs from DC to 70 GHz and Down to 2 K	
00	P. Vryonides, Frederick Research Center; S. Nikolaou, Frederick Research Center; D. Psychogiou, Univ. College Cork	Marco Passafiume, Univ. of Florence; Giovanni Collodi, Dept. Information Engineering, Univ. of Florence; Alessandro Cidronali, Dept. Information Engineering, Univ. of Florence	T. Shenoy, Jet Propulsion Lab; R. Johnson, Jet Propulsion Lab; J. Tanabe, Jet Propulsion Lab; R. Beauchamp, Jet Propulsion Lab; L. Yam, Jet Propulsion Lab; Y. Gim, Jet Propulsion Lab; D. Heyer, Jet Propulsion Lab; J. Plaut, Jet Propulsion Lab	Shai Bonen, Univ. of Toronto; Gregory Cooke, Univ. of Toronto; Thomas Jage Univ. of Toronto; Apurv Bharadwaj, U of Toronto; Suyash Pati Tripathi, Univ. Toronto; Didier Celi, STMicroelectronos Pascal Chevalier, STMicroelectronics Peter Schvan, Ciena, Corp.; Sorin Voinigescu, Univ. of Toronto	
14:30	Tu3A-4: A Low-Loss Reconfigurable Plasma Impedance Tuner for Real-Time, Frequency-Agile, High-Power RF	Tu3C-4: Wideband Stacked Metamaterial for a Compact and Efficient Dual-Band Wireless Power	Tu3D-4: Design of an HF-VHF Ice Penetrating Synthetic Aperture Radar J.D. Hawkins, P.V. Brennan, <i>Univ. College</i>	Tu3E-4: Fully Automatic 4K Cryogen Probe Station for DC and Microwave Measurements on 150mm and 200	
14:4	Applications J. Roessler, <i>Baylor Univ.</i> ; A. Fisher, <i>Purdue</i> <i>Univ.</i> ; A. Egbert, <i>Baylor Univ.</i> ; Z. Vander	Transfer X. Jiang, Kyushu Univ.; R.K. Pokharel, Kyushu Univ.; A. Barakat, Kyushu Univ.;	London; K.W. Nicholls, British Antarctic Survey; L.B. Lok, Univ. College London	Wafers J.T. West, High Precision Devices; A. Kurlej, MIT Lincoln Laboratory;	
0	Missen, <i>Purdue Univ.</i> ; T. Van Hoosier, <i>Baylor Univ.</i> ; C. Baylis, <i>Baylor Univ.</i> ; M.A. Khater, <i>Purdue Univ.</i> ; D. Peroulis,	K. Yoshitomi, Kyushu Univ.	Tu3D-5: Analog VHF IQ Receiver with Low IF R. Campbell, Portland State Univ.;	A. Wynn, <i>MIT Lincoln Laboratory</i> ; C. Rogers, <i>High Precision Devices</i> ; M.A. Gouker, <i>MIT Lincoln Laboratory</i>	
14:50	Purdue Univ.; R.J. Marks II, Baylor Univ.		K. Dahn, Portland State Univ.	S.K. Tolpygo, MIT Lincoln Laboratory	
_	Tu3A-5: Reconfigurable Filtering Attenuator with Continuously Tunable Center Frequency and Amplitude	Tu3C-5: Mutual Power Optimization of Photovoltaics and Wireless Power Transfer for Space Based Solar Power	Tu3D-6: 200W Outphasing Amplifier System for 650MHz		
	Z. Wei, UESTC; S. Chen, UESTC; X. Zhu,	A. Ayling, Caltech; A. Wu, Caltech; A. Hajimiri, Caltech	Research		

15:10

RFIC TECHNICAL SESSIONS 13:30 – 15:10 Tuesday, 21 June 2022

Colorado Convention Center

	1A-1C	1D-1F	The NIST Atomic Clock—Learn How
	RTu3A: Circuits and Techniques for Full Duplex Transceivers	RTu3B: mm-Wave/THz Devices and BIST/ Calibration, and Circuits for Emerging Applications	it Works While Building Your Own NIST Time Receiver
	Chair: Roxann Broughton-Blanchard, Analog Devices, USA	Chair: Mona Hella, Rensselaer Polytechnic Institute,	
	Co-Chair: Mohyee Mikhemar, Broadcom, USA	USA Co-Chair: Fabio Sebastiano, Technische Universiteit Delft, The Netherlands	IMS Show Floor, System Demo Zone (Booth 11100)
H			Tuesday.
13:30	RTu3A-1: An Integrated Reconfigurable SAW-Less Quadrature Balanced N-Path Transceiver for Frequency-Division and Half Duplex Wireless	RTu3B-1: LNFET Device with 325/475GHz fT/fMAX and 0.47dB NFMIN at 20GHz for SATCOM Applications in 45nm PDSOI CMOS	09:30 - 17:00 21 June 2022
13	E. Zolkov, Technion; N. Ginzberg, Technion; E. Cohen, Technion	S.V. Khokale, GLOBALFOUNDRIES; T. Ethirajan, GLOBALFOUNDRIES; H.K. Kakara, GLOBALFOUNDRIES; B. Humphrey, GLOBALFOUNDRIES; K. Shanbhag, GLOBALFOUNDRIES; V. Vanukuru, GLOBALFOUNDRIES; V. Jain, GLOBALFOUNDRIES; S. Jain, GLOBALFOUNDRIES	Come build a NIST atomic clock receiver at IMS. This interactive experience will teach you how the NIST atomic clock works and how its radio synchronization transmits the time around the US. You will then have the opportunity to build your own NIST radio medicate an experience will be built
13:50	RTu3A-2: A 0.5–4GHz Full-Duplex Receiver with Multi-Domain Self-Interference Cancellation Using Capacitor Stacking Based Second-Order Delay Cells in RF Canceller	RTu3B-2: E-Band CMOS Built-In Self-Test Circuit Capable of Testing Active Antenna Impedance and Complex Channel Response	receiver from scratch! The radio will be built at several stations, each of which teach you the operation of a portion of the radio and allow you to assemble that portion at the station. After you complete all the stations, your board will
	C. Wang, Fudan Univ.; W. Li, Fudan Univ.; F. Chen, Fudan Univ.; W. Zuo, Fudan Univ.; Y. Pu, Fudan Univ.; H. Xu, Fudan Univ.	SU. Choi, POSTECH; K. Kim, POSTECH; K. Lee, POSTECH; S. Lee, POSTECH; HJ. Song, POSTECH	be fully assembled and you can test it out. No better place to get a clean signal than 31 miles from the source of the signal! David S. Ricketts received the PhD in Electrical Engineering from Harvard University. He is currently a Full Professor of Electrical
14:10			and Computer Engineering at North Carolina State University. His scientific research focuses on emerging microwave and
10	RTu3A-3: A 2Gb/s 9.9pJ/b Sub-10GHz Wireless Transceiver for Reconfigurable FDD Wireless Networks and Short-Range Multicast Applications	RTu3B-3: Millimeter-Wave VNA Calibration Using a CMOS Transmission Line with Distributed Switches	analog circuits and systems from 1Mhz to 300 GHz. His work has appeared in Nature and in numerous IEEE conferences and
	R. Liu, Intel; A.B.K. T., Intel; R. Dorrance, Intel; T. Cox,	JC. Chien, National Taiwan Univ.	journals. He is the author of the two books on jitter in high-speed electronics and electrical solitons. He is the recipient of the NSF
	Intel; R. Jain, Intel; T. Acikalin, Intel; Z. Zhou, Intel; TY. Yang, Intel; J. Escobar-Pelaez, Intel; S. Yamada, Intel; K. Foust, Intel; B. Carlton, Intel	RTu3B-4: Multi-Tone Frequency Generator for Gate-Based Readout of Spin Qubits	CAREER Award, the DARPA Young Faculty Award and the George Tallman Ladd research award and is a Harvard Innovation Fellow.
1/		M. Ouvrier-Buffet, <i>CEA-LETI</i> ; A. Siligaris, <i>CEA-LETI</i> ; J.L. Gonzalez-Jimenez, <i>CEA-LETI</i>	In addition as a teacher he is the recipient of the 2009 Wimmer Faculty Teaching Fellow at Carnegie Mellon University, 2013 Harvard University Bok Center Teaching Award and the 2021
14:30	RTu3A-4: Fully Integrated Ultra-Wideband Differential Circulator Based on Sequentially Switched Delay Line in 28nm FDSOI CMOS	RTu3B-5: A Dual-Antenna, 263GHz Energy Harvester in CMOS for Ultra-Miniaturized Platforms with 13.6% RF-to-DC Conversion Efficiency at -8dBm Input Power	William F. Lane Outstanding Teaching award at NCSU. Since 2015, Prof. Ricketts has taught experiential hand-on workshops on building a QAM Radio and a FMCW RADAR across the globe at
	J. Hwang, Yonsei Univ.; BW. Min, Yonsei Univ.	M.I.W. Khan, <i>MIT</i> ; E. Lee, <i>MIT</i> ; N.M. Monroe, <i>MIT</i> ; A.P. Chandrakasan, <i>MIT</i> ; R. Han, <i>MIT</i>	all of the major microwave conferences.
	RTu3A-5: A C-Band Commutated-LC-Negative-R Delay Circuit with Harmonic Power Recycling Achieving 1.5ns Delay, 1.4GHz BW, and 6dB IL		HAM Radio Hidden Transmitter Hunt and Social
14:50	S. Ming, Univ. of Illinois at Urbana-Champaign; R. Islam, Univ. of Illinois at Urbana-Champaign; J. Zhou, Univ. of Illinois at Urbana-Champaign		Centennial Ballroom G-H,
			Hyatt Regency
			Tuesday,
			19:00 - 21:00 21 June 2022
15:10			The Ham Radio Social at IMS2022 will include a Hidden Transmitter Hunt, organized and run by a female team of students/young professionals. We will start with a short presentation and demonstration of the equipment, divide up into small teams and attempt to locate two different types of hidden RF sources. All radio amateurs and other interested IMS participants are cordially invited to attend

TUESDAY

MICF	ROAPPS	5	09:30 - 17:00	Tuesday, 21 June 2022	IMS Show Floor: Booth 9110
SESSION CODE	TIME	TITLE			SPEAKER/S, AFFILIATION
TUMA1	09:30 - 9:45		esonator-Based Surface Sca wave, 5G, and Energy Materi		Marzena Olszewska-Placha, Malgorzata Celuch, Janusz Rudnicki, <i>QWED Sp. z o.o.</i>
TUMA2	09:45 - 10:00	Designing Waveguid Al Optimization	e Microwave Filters Using Au	tomatic 3D Modelling and	Diamond Liu, SynMatrix Technologies
TUMA3	10:00 - 10:15		Measurement Up to 330 GHz ith Simple Operation	, ,	Yoshiyuki Yanagimoto, EM Labs Inc.
TUMA4	10:15 - 10:30	Embedding of Active Enabling High Densit	ICs into Thin Film Circuits — y Hybrid Integration		Michele Stampanoni, Cicor Group
TUMA5	10:30 - 10:45	Frequency Equalizat	ion Through Rapid and Custo	omizable Design Approach	Mo Hasanovic, Smiths Interconnect Inc.
TUMA6	10:45 - 11:00			A Simulation and Hardware Test	Markus Loerner, Rohde & Schwarz GmbH & Co KG
TUMA7	11:00 - 11:15	Including a Compari	r Amplifier Linearization Bene son to Hardware Test		Markus Loerner, Rohde & Schwarz GmbH & Co KG
TUMA8	11:15 - 11:30		hronize Fractional PLLs? Not	•	Unal Kudret, Analog Devices, Inc.
TUMA9	11:30 - 11:45	Integrated Phase No			Wolfgang Wendler, Rohde & Schwarz GmbH & Co KG
TUMA10	11:45 - 12:00	Thickness		fer in Relation to AuSn Preform	Jenny Gallery, Indium Corporation
TUMA11	12:00 - 12:15		Low Loss, 3D Printable Photo		John Coonrod, Rogers Corporation
TUMA12	12:15 - 12:30	Heterogenous Techr			David Vye, Gus Dallman, Cadence
TUMA13	12:30 - 12:45	Off the Wafer	nomous Operation Using ML		Gavin Fisher, FormFactor
TUMA14	12:45 - 13:00		c Structure Simulation Utilizir	-	Ralf Ihmels, Mician GmbH
TUMA15	13:00 - 13:15	Analysis for RF Powe			David Vye, Cadence
TUMA16	13:15 - 13:30	Devices	Challenges in High Speed ar	-	Dustin Kendig, Microsanj
TUMA17	13:30 - 13:45	Influences	per Foil, How It's Made, Roug		John Coonrod, Rogers Corporation
TUMA18	13:45 - 14:00	Best Practices for M Scale Packaging Pro	itigating the Shortcomings of ocesses	f Common Chip	Craig Blanchette, <i>BAE Systems</i> ; Darby Davis, <i>Gel-Pak</i>
TUMA19	14:00-14:15	D-Band FMCW Rada	ar for VNA-like S-Parameter N	leasurements	Timo Jaeschke, Simon Kueppers, Jan Barowski, 2pi-Labs GmbH; Lukas Piotrowsky, Ruhr Univ. Bochum
TUMA20	14:15-14:30	IEEE Low-Earth-Orb	it (LEO) Satellites; Systems		Jan Budroweit, German Aerospace Center; Markus Gardill, Brandenburg Univ. of Technology; Witold Kinsner, Univ. of Manitoba; Mahjeda Ali, IEEE
TUMA21	14:30 - 14:45	Challenges of Auton	natic Fixture Removal (AFR) ir	n Cryogenic Environments	David Daughton, Scott Yano, <i>Lake Shore</i> <i>Cryotronics</i> ; Andy Owen, <i>Keysight Technologies</i>
TUMA22	14:45 - 15:00		ioners for 5G Emissions Test	<u> </u>	Jari Vikstedt, ETS-Lindgren
TUMA23	15:00 - 15:15	Measurements	Fixtures for High Data-Rate V		Rich Pieciak, Rohde & Schwarz GmbH & Co KG
TUMA24	15:15 - 15:30	-	Fixtures for RF & Microwave (Rich Pieciak, Rohde & Schwarz GmbH & Co KG
TUMA25	15:30 - 15:45	Coplanar Waveguid			John Coonrod, Rogers Corporation
TUMA26	15:45 - 16:00	Devices	d Interconnects with Aerosol .		Don Novotny, Optomec
TUMA27	16:00 - 16:15	Improving Lossy Me Analyzer	dia Reflection Measurements	s with a Portable Network	Subbaiah Pemmaiah, Copper Mountain Technologies
TUMA28	16:15 - 16:30	Materials Character	ization and Assessment for 5	G-mmWave Applications	Malgorzata Celuch, <i>QWED</i> ; Say Phommakesone, <i>Keysight Technologie</i> s
TUMA29	16:30 - 16:45	Minimize the Impac	t that Test Fixturing Has on Yo	ur Test Results	Lawrence Wilson, Rohde & Schwarz GmbH & Co KG
TUMA30	16:45 - 17:00	New Power Measure	ment Techniques for Today's	Demanding RF World	Lawrence Wilson, Rohde & Schwarz GmbH & Co KG
Sponsor	ed By:				

ROHDE&SCHWARZ

IMS STUDENT PAPER COMPETITION

THIS YEAR'S IMS STUDENT PAPER COMPETITION FINALISTS:

A Wideband Two-Way Digital Doherty Transmitter in 40nm CMOS | Th03C_2 Student Finalist: Mohammadreza Beikmirza, Delft Univ. of Technology Advisor: Morteza S. Alavi, Delft Univ. of Technology

Miniaturized 28 Ghz Packaged Bandpass Filter with High Selectivity and Wide Stopband Using Multi-Layer Pcb Technology | We02A_6 Student Finalist: Yunbo Rao, Univ. of Electronic Science and Technology of China Advisor: Xun Luo, Univ. of Electronic Science and Technology of China

Design and Implementation of a 3.9-to-5.3 GHz 65 nm Cryo-CMOS LNA with an Average Noise Temperature of 10.2 K | We04D_2 Student Finalist: Sayan Das, Univ. of Massachusetts, Amherst Advisor: Joseph Bardin, Univ. of Massachusetts Amherst

33 GHz Overmoded Bulk Acoustic Resonator | Th02B_1 Student Finalist: Zachary Schaffer, *Carnegie Mellon Univ.* **Advisor:** Gianluca Piazza, *Carnegie Mellon Univ.*

Deep Learning Enabled Inverse Design of 30-94 GHz Psat, 3dB SiGe PA Supporting Concurrent Multi-band Operation at Multi-Gbps | We02C_1 Student Finalist: Zheng Liu, *Princeton Univ.* Advisor: Kaushik Sengupta, *Princeton Univ.*

Josephson Junctions Based Low Temperature Superconducting Phase Shifter for X- and K-Band using MIT-LL SFQ5ee Process | Tu02E_1 Student Finalist: Navjot Khaira, Univ. of Waterloo Advisor: Raafat R. Mansour, Univ. of Waterloo Load-Modulation-Based IMD3 Cancellation for Millimeter-Wave Class-B CMOS Power Amplifiers Achieving EVM<1.2% | We02E_1 Student Finalist: Masoud Pashaeifar, Delft Univ. of Technology Advisor: Morteza S. Alavi, Delft Univ. of Technology

Fused-Silica Stitch-Chips with Compressible Microinterconnects for Embedded RF/mm-Wave Chiplets | We03B_3 Student Finalist: Ting Zheng, Georgia Institute of Technology Advisor: Muhannad S. Bakir, Georgia Institute of Technology

860 µW Terahertz Power Generation from Graded Composition InGaAs Photoconductive Nanoantennas | Th01C_2 Student Finalist: Ping-Keng Lu, Univ. of California, Los Angeles Advisor: Mona Jarrahi, Univ. of California, Los Angeles

A 190-to-220GHz 4-bit Passive Attenuator with 1.4dB Insertion Loss and Sub-0.34dB RMS Amplitude Error using Magnetically Switchable Coupled-Lines in 0.13-µm CMOS Technology | We04G_4 Student Finalist: Nengxu Zhu, Tianjin Univ. Advisor: Fanyi Meng, Tianjin Univ.

A QUANTUM DAY RECEPTION

15:10 - 17:00

0 Tuesday, 21 June 2022

Room: 2A-3B

Chairs: Justus Brevik, Robert Horansky, Akim Babenko, NIST

TUIF1-1: Plenary Poster: Control and Readout of a Superconducting Qubit Using a Photonic Link

Florent Lecocq, National Institute of Standards and Technology; Frank Quinlan, National Institute of Standards and Technology; Jason Horng, National Institute of Standards and Technology; Katarina Cicak, National Institute of Standards and Technology; Jose Aumentado, National Institute of Standards and Technology; Scott Diddams, National Institute of Standards and Technology; John Teufel, National Institute of Standards and Technology TUIF1-2: VHF-UHF EMI Source Tracking Experiments

R. Campbell, Portland State Univ.; N. Fellows, Portland State Univ.; K. Dickens, Portland State Univ.; A. Rugani, Portland State Univ.

TUIF1-3: Quantum Method for Scaling the Finite Element Based Quantum Solutions of Electromagnetic Problems

L. Zhang, Univ. of Toronto; Q.-J. Zhang, Carleton Univ.

TUIF1-5: Low-Loss On-Chip Passive Circuits Using C4 Layer for RF, mmWave and Sub-THz Applications

Q. Yu, Intel; G.-S. Kim, Intel; J. Garrett, Intel; D. Thomson, Intel; G.C. Dogiamis, Intel; N. Monroe, *MIT*; R. Han, *MIT*; Y. Ma, Intel; J. Waldemer, Intel; Y.S. Nam, Intel;

- G. Beltran, Intel; V.B. Neeli, Intel;
- S. Ravikumar, Intel; S. Rami, Intel; C. Pelto, Intel; F. Karl, Intel;
- C. Pelto, Intel; E. Karl, Intel

TUIF1-6: Compact W-Band Silicon-Micromachined Filters with Increased Fabrication Robustness

O. Glubokov, *KTH*; M. Mehrabi Gohari, *KTH*; J. Campion, *KTH*; J. Oberhammer, *KTH*

TUIF1-7: On the Drain-to-Source Capacitance of Microwave FETs in Triode Region

J.L. Gomes, Universidade de Aveiro; L.C. Nunes, Universidade de Aveiro; J.C. Pedro, Universidade de Aveiro

TUIF1-8: An Injection-Lockable InP-DHBT Source Operating at 421GHz with -2.4dBm Output Power and 1.7% DC-to-RF Efficiency

A. Possberg, Universität Duisburg-Essen; F. Vogelsang, Ruhr-Universität Bochum; N. Pohl, Ruhr-Universität Bochum; M. Hossain, FBH; H. Yacoub, FBH; T.K. Johansen, Technical Univ. of Denmark; W. Heinrich, FBH; N. Weimann, Universität Duisburg-Essen TUIF1-9: GaN Characterization Method Towards Linearizability Prediction

A. Issaoun, Ampleon

TUIF1-10: Miniaturized Dual-Band TM-Mode Dielectric Filter and Its Reconfiguration Capabilities

A. Widaa, CAU; M. Höft, CAU

TUIF1-11: Low-Directivity High-Gain Rectenna Array for Improving Power-Harvesting Efficiency on 5.8GHz Batteryless Transponder

M. Passafiume, Università di Firenze; M. Righini, Università di Firenze; G. Collodi, Università di Firenze; A. Cidronali, Università di Firenze

TUIF1-12: Study on Power Conversion Efficiency of Rectenna Array with Deformed Flat-Top Beam for Microwave Power Transmission

N. Takabayashi, *Kyoto Univ.*; N. Shinohara, *Kyoto Univ.*; T. Mitani, *Kyoto Univ.*

15:40 - 17:00

Tuesday, 21 June 2022

Colorado Convention Center

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 401-402 403-404 501-502 503-504 Tu4A: Integrated Filters in the GHz Tu4B: Components for Advanced Tu4C: Low-Frequency Wireless Tu4D: Advanced High-Speed and Sub-THz Range Systems and Applications **Power Transfer and Harvesting Mixed-Signal Circuits For Optical** and mm-Wave Systems Systems Chair: Julien Lintignat, XLIM (UMR 7252) Chair: Kenneth Mays, Boeing Co-Chair: Damla Dimlioglu, Cornell Univ. Chair: Dieff Vital, Univ. of Illinois at Chair: Srinivasan Gopal, Broadcom Co-Chair: Hjalti H. Sigmarsson, Univ. of Chicago Corporation Oklahoma Co-Chair: Nuno Borges de Carvalho, Co-Chair: Hermann Boss, Rohde & Universidade de Aveiro Schwarz 15:40 Tu4D-1: 160-GSa/s-and-Beyond 108-GHz-Bandwidth Over-2-Vppd Tu4A-1: A 31-Tap Reconfigurable Analog Tu4C-1: Experimental Demonstration of Tu4B-1: A DC to 110GHz Plasma Switch FIR Filter Using Heterogeneously Nonlinear Metasurfaces for High-A. Fisher, Purdue Univ.; T.R. Jones, Univ. Integrated Polystrata Delay-Lines Performance Low-Cost Near-Field Base Output-Swing 0.5-µm InP DHBT 2:1 of Alberta; D. Peroulis, Purdue Univ. Station **AMUX-Driver for Next Generation** E. Wagner, Northrop Grumman; **Optical Communications** T. LaRocca, Northrop Grumman; J.V. de Almeida, Polytechnique Montréal; 15:50 Romain Hersent, III-V Lab; Agnieszka M. Verderber, Nuvotronics; C. Rezende, X. Gu, Polytechnique Montréal; Nuvotronics; P. May, Nuvotronics M.M. Mosso, PUC-Rio; C.A.F. Sartori, Konczykowska, III-V Lab; Filipe Jorge, III-V Universidade de São Paulo; K. Wu, Lab; Fabrice Blache, III-V Lab; Virginie Polytechnique Montréal Nodjiadjim, III-V Lab; Muriel Riet, III-V Lab; Colin Mismer, III-V Lab; Jérémie Renaudier, Nokia Bell Labs 16:00 Tu4D-2: An Energy-Efficient, 60Gbps Tu4A-2: An Inductor-Less All-Passive Tu4B-2: A Four-Port Circulating Tu4C-2: Capacitive Coupler for Wireless **Higher-Order N-Path Filter Based on** Variable Transimpedance Optical **Duplexer for Simultaneous Transmit** Power Transfer to Intravascular Implant **Receiver in a 90nm SiGe HBT Rotary Clocking in N-Path Filters Receive Wireless Operation** Devices Technology M. Khorshidian, Columbia Univ.; D. Regev, Toga Networks; N. Ginzburg, Masaya Tamura, Toyohashi Univ. of Technion; E. Zolkov, Technion; E. Loebl, Technion; I. Melamed, Technion; S. Shilo, Technology; Takamasa Segawa, Toyohashi S.L.N. Garimella, Columbia Univ.; L.A. Valenzuela, G. Movaghar, J. Dalton, A. Nagulu, Columbia Univ.; Univ. of Technology; Marimo Matsumoto, N. Hosseinzadeh, H. Andrade, A. Maharry, C.L. Schow, J.F. Buckwalter, Univ. of H. Krishnaswamy, Columbia Univ. Toga Networks; D. Ezri, Toga Networks; Toyohashi Univ. of Technology E. Cohen, Technion California, Santa Barbara Tu4A-3: A Miniaturized Differential Tu4D-3: An Area Efficient Low-Power Tu4B-3: E-Band Power Forward and Tu4C-3: Power Supply to Multiple **Sensors and Leakage Field Analysis** CMOS BPF with High Selectivity and **Divider Switch for On-Chip** mmWave PRBS Generator in FDSOI Using Cavity Resonance-Enabled Wireless Power Transfer Improved In-Band Flatness Based on **Reconfigurable and Scalable Arrays** F. Probst, FAU Erlangen-Nürnberg; **Transformer-Type Resonators** A. Engelmann, FAU Erlangen-Nürnberg; K.-J. Choi, Yonsei Univ.; B.-W. Min, K. Li, UESTC; B. Liu, UESTC; P.-L. Chi, S. Akai, Toyohashi Univ. of Technology; M. Dietz, FAU Erlangen-Nürnberg; Yonsei Univ. V. Issakov, Technische Univ. 6:30 H. Saeki, Murata Manufacturing; National Chiao Tung Univ.; Y. Wang, UESTC; T. Yang, UESTC M. Tamura, Toyohashi Univ. of Technology Braunschweig; R. Weigel, FAU Erlangen-Nürnberg 16:40 **Tu4A-4: Dual-Band Patch Filter** Tu4B-4: Passive Disposable Microwave Tu4C-4: Low Magnetic Loss 180/270GHz on BiCMOS 55nm Metamaterial Based Miniaturized WPT Sensor for Online Microplastic **Contamination Monitoring** System for Biomedical Implants M. Wehbi, TIMA (UMR 5159); M. Margalef-Rovira, *IEMN (UMR 8520)*; C. Durand, *STMicroelectronics*; M. Shafiei, Univ. of Waterloo; Z. Abbasi, S. Alshhawy, Kyushu Univ.; A. Barakat, Univ. of Calgary; C.L. Ren, Univ. of Kyushu Univ.; R.K. Pokharel, Kyushu 16:50 S. Lepilliet, IEMN (UMR 8520); Waterloo Univ.; K. Yoshitomi, Kyushu Univ. A.L.C. Serrano, Universidade de São Paulo; P. Ferrari, TIMA (UMR 5159) 17:00

RFIC TECHNICAL SESSIONS 15:40 - 17:00 Colorado Convention Center

4D-4F		1A-1C	1D-1F	
4E: Next-Generation mm-Wave		RTu4A: Emerging Wireless Communications	RTu4B: Building Blocks for Next Generation	1
aN Technologies and MMICs for G/6G and DoD Applications		Chair: David D. Wentzloff, Univ. of Michigan, USA	Frequency Synthesis	-
hair: Jeong-sun Moon, HRL		Co-Chair: Arun Paidimarri, IBM T.J. Watson Research Center, USA	Chair: Joseph D. Cali, <i>Raytheon, USA</i> Co-Chair: Ehsan Afshari, <i>University of Michigan, USA</i>	
aboratories				
D-Chair: David Brown, BAE Systems				
	15:40			F
4E-1: Emerging Millimeter-Wave evice Technology — Next Generation	0	RTu4A-1: 802.11ah Transmitter with -55dBr at ±3MHz and -58dBr at ±20MHz ACLR and 60dB 2nd-Order Harmonic	RTu4B-1: Class-C BAW Oscillator Achieving a Close-In FOM of 206.5dB at 1kHz with Optimal Tuning for Narrowband	ŕ
aN and Beyond		Rejection for 470MHz - 790MHz TV White Space Band Devices	Wireless Systems	_
E. Kazior, DARPA; G.M. Jones, Advanced esearch Consultants; TH. Chang, etInTec	15:50	SS. Myoung, Newracom; J. Park, Newracom; C.H. Song, Newracom; R.W. Kim, Newracom; J. Ryu, Newracom; J. Choi,	 B. Bahr, Texas Instruments; D. Griffith, Texas Instruments; A. Kiaei, Texas Instruments; T. Tsai, Texas Instruments; R. Smith, Texas Instruments; B. Haroun, Texas Instruments 	,
	50	Newracom; HN. Nguyen, Newracom; S. Lee, Newracom; I. Jung, Newracom; JH. Lim, Newracom; S.K. Lee, Newracom		
	1			
4E-2: Improved N-Polar GaN	16:00	RTu4A-2: A 915MHz 19µW Blocker-Enhanced Wake-Up	RTu4B-2: A 5.1dBm 127–162GHz Frequency Sextupler with	
m-Wave Linearity, Efficiency, and bise		Receiver with Frequency-Hopping Two-Tone Modulation Achieving 53dB Tolerance to In-Band Interference	Broadband Compensated Transformer-Based Baluns in 22nm FD-SOI CMOS	1
. Guidry, P. Shrestha, W. Liu,		H. Ren, Fudan Univ.; D. Ye, Fudan Univ.; B. Chen, Fudan Univ.;	S. Li, Tsinghua Univ.; W. Chen, Tsinghua Univ.; X. Li, Tsinghua	
Romanczyk, N. Hatui, C. Wurm, R. Karnaty, H. Li, E. Ahmadi, S. Keller, F. Buckwalter, <i>Univ. of California,</i> anta Barbara	16:10	X. Jin, Fudan Univ.; W. Gong, Fudan Univ.; R. Xu, Fudan Univ.; CJ.R. Shi, Univ. of Washington	Univ.; Y. Wang, Univ. of Michigan	
	_			
4E-3: ScAIN-GaN Transistor	16:20	RTu4A-3: A 320µW Receiver with -58dB SIR Leveraging a	RTu4B-3: A Digital-to-Time Converter Based on Crystal	1
chnology for Millimeter-Wave tra-High Power and Efficient MMICs		Time-Varying N-Path Filter	Oscillator Waveform Achieving 86fs Jitter in 22nm FD-SOI CMOS	
M. Chumbes, <i>Raytheon</i> ; J. Logan,		M. Moosavifar, Univ. of Michigan; Y.K. Cherivirala, Univ. of Michigan; D.D. Wentzloff, Univ. of Michigan	X. Chen, Univ. College Dublin; T. Siriburanon, Univ. College	
aytheon; B. Schultz, Raytheon; . DeJarld, Raytheon; M. Tahhan,	16:30		Dublin; Z. Wang, MCCI; J. Du, Univ. College Dublin; Y. Hu, Univ. College Dublin; A. Zhu, Univ. College Dublin; R.B. Staszewski,	
aytheon; N. Kolias, Raytheon; M. Hardy, S. Naval Research Laboratory;	0		Univ. College Dublin	
. Ancona, U.S. Naval Research aboratory; D. Meyer, U.S. Naval				
esearch Laboratory	16			
4E-4: Multi-Channel Schottky-Gate	:40	RTu4A-4: A 26-to-33GHz Time-Modulated Spectral-Spatial	RTu4B-4: Highly Accurate Frequency Quadrupler Based LO	1
RIDGE HEMT Technology for illimeter-Wave Power Amplifier		Mapping MIMO Receiver Array with Concurrent Steerable Multi-Beams Using Only One Beamformer and One	Phase Shifter Achieving 0.29° RMS Phase Error for Wideband E-Band Beamforming Receiver	I.
pplications Shinohara, C. King, D. Regan,		Single-Wire Interface	K. Lee, POSTECH; CG. Choi, POSTECH; K. Kim, POSTECH;	Ī
Regan, A. Carter, A. Arias, J. Bergman, . Urteaga, B. Brar, <i>Teledyne Scientific &</i>	16:50	TY. Huang, Georgia Tech; B. Lin, Georgia Tech; N.S. Mannem, Georgia Tech; H. Wang, Georgia Tech	S. Lee, POSTECH; SU. Choi, POSTECH; J. Lee, ETRI; B. Koo, ETRI; HJ. Song, POSTECH	
naging; Y. Cao, Qorvo; A. Xie, Qorvo; Beam, Qorvo; C. Lee, Qorvo				
4E-5: Highly-Linear and Efficient	17:00			
m-Wave GaN HEMTs and MMICs	0			
S. Moon, HRL Laboratories; B. Grabar, AL Laboratories; J. Wong, HRL iboratories; J. Tai, HRL Laboratories; Arkun, HRL Laboratories; D.V. Morales, RL Laboratories; C. Dao, HRL				
boratories; S. Bharadwaj, HRL boratories; D. Fanning, HRL boratories; N. Venkatesan, Univ. of btre Dame; P. Fay, Univ. of Notre Dame				

08:00 - 09:40

Wednesday, 22 June 2022

Colorado Convention Center

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 401-402 403-404 501-502 503-504 We1A: High-Density Integration of We1B: Advances in High We1C: Advanced 5G Wireless We1D: Nonlinear Analysis and **Transmission Line Structures** Frequency Device Modeling System Architectures and **Design of Microwave Signal Underlying Over-the-Air Generation and Processing** Chair: Jay McDaniel, Univ. of Oklahoma Chair: Shahed Reza, Sandia National **Characterization Techniques Circuits** Laboratories Co-Chair: Jason Soric, Raytheon Co-Chair: Rob Jones, BAE Systems Chair: Kenneth E. Kolodziej, MIT Lincoln Chair: Fabrizio Bonani, Politecnico di l aboratory Torino Co-Chair: Arnaldo S.R. Oliveira, Co-Chair: Almudena Suárez, Universidad Universidade de Aveiro de Cantabria 08:00 We1A-1: Multilayer Composite Right/ We1C-1: Air-Induced PIM Cancellation We1D-1: Nonlinear Analysis of We1B-1: Back-Gate Lumped Resistance in FDD MIMO Transceivers **Left-Hand Transmission Line with** Effect on AC Characteristics of FD-SOI **Oscillators Based on a Slow-Wave Structure for Phase-Noise Reduction** Ultra-Wideband and Miniaturized MOSFET Vesa Lampu, Tampere Univ.; Lauri Anttila, **Characteristics** M. Pontón, Universidad de Cantabria; Martin Vanbrabant, Univ. Catholiqué de Tampere Univ.; Matias Turunen, Tampere M. Jia, UESTC; Y. Dong, UESTC; J. Zhang, Louvain; Lucas Nyssens, UCLouvain; Univ.; Marko Fleischer, Nokia; S. Sancho. Universidad de Cantabria: UESTC; X. Luo, UESTC Valeriya Kilchytska, Université catholique Jan Hellmann, Nokia; Mikko Valkama, A. Herrera, Universidad de Cantabria; de Louvain; Jean-Pierre Raskin, Université Tampere Univ. A. Suárez, Universidad de Cantabria Catholique de Louvain 08:20 We1A-2: Multilayer GCPW-to-AFSIW We1B-2: Statistical Modeling of We1C-2: Virtual Receiver Matrix for We1D-2: Quadrature Harmonic Transition for High-Performance Manufacturing Variability in GaN HEMT **Future Multifunction Wireless Systems** Self-Oscillating Mixer for Multifunction Systems on Substrate **I-V Characteristics with ASM-HEMT** Wireless Communication and Sensing S.A. Keivaan, Polytechnique Montréal; Systems P. Burasa, Polytechnique Montréal; K. Wu, Jean-Charles Henrion, Univ. of Bordeaux; F. Chavez, Macquarie Univ.; N.C. Miller, Anthony Ghiotto, Univ. of Bordeaux; Tifenn AFRL; D.T. Davis, AFRL; S. Khandelwal, Polytechnique Montréal Y. Bigdeli, Polytechnique Montréal; Martin, Univ. of Bordeaux; Jean-Marie Macquarie Univ. P. Burasa, Polytechnique Montréal; Pham, Univ. of Bordeaux; Petronilo K. Wu, Polytechnique Montréal Martin-Iglesias, Keplerlaan 1, 2201 AZ Noordwijk, Pays-Bas; Christophe Goujon, Direction générale de l'armement; Laurent Carré, ACTIA Telecom 88 6 We1A-3: Substrate-Integrated Hybrid We1B-3: 200W GaN PA Design Based We1C-3: Over-The-Air Test Method for We1D-3: Nonlinear Analysis of an **Evaluation of 5G Millimeter Wave Metallo-Dielectric Waveguide for** on Accurate Multicell Transistor **Injection-Locked Oscillator Coupled to Millimeter-Wave and Terahertz** Modeling **Devices Under 3D Spatially Dynamic** an External Resonator **Environment from Single Feeder** Applications V. Vadalà, Università di Milano-Bicocca; Victor Ardila, Univ. of Cantabria; D.R. Paredes. Silicon Austria Labs: C. Liu. Polvtechnique Montréal: K. Wu. A. Raffo, Università di Ferrara: G. Bosi, Franco Ramirez, Univ. of Cantabria: Polytechnique Montréal Università di Ferrara; A. Barsegyan, M.A. Beach, Univ. of Bristol; M. Rumney, Almudena Suarez, Univ. of Cantabria 50 Integra Technologies; J. Custer, Integra Rumnev Telecom Technologies; G. Formicone, Integra Technologies; J. Walker, Integra Technologies; G. Vannini, Università di Ferrara 09 S We1A-4: Compact Interference Based We1B-4: Neural Network Based GaN We1C-4: Proof-of-Concept of We1D-4: Noise Analysis for Six-Port Microstrip Single-Pole Double-Throw **HEMT Modelling for Millimeter Wave** Millimeter-wave RF Beamforming **Radars with Schottky Diode Detectors** Utilizing Liquid Crystal Phase Shifter **Power Amplifiers** Transmitter Architecture Employing F. Michler, FAU Erlangen-Nürnberg; Frequency-Multiplier-Based Up-D. Wang, Technische Univ. Darmstadt; K. Nishiguchi, Sumitomo Electric B. Scheiner, FAU Erlangen-Nürnberg; converters E. Polar, Technische Univ. Darmstadt; Industries; T. Kawasaki, Sumitomo R. Weigel, FAU Erlangen-Nürnberg; H. Tesmer, Technische Univ. Darmstadt; Electric Industries; M. Tanomura, Ahmed Ben Ayed, Univ. of Waterloo; F. Lurz, Technische Universität Hamburg :: R. Jakoby, Technische Univ. Darmstadt Sumitomo Electric Industries Ifrah Jaffri, Univ. of Waterloo; Patrick Mitran, Univ. of Waterloo; Slim Boumaiza, Univ. of Waterloo; Ali Darwish, United States Army Research Laboratory 09:20 We1A-5: Integrated Low-Loss Planar We1C-5: Over-the-Air Digital **Goubau Lines on Glass Interposer for 6G** Predistortion of 5G FR2 Beamformer **Wireless Applications Array by Exploiting Linear Response** Compensation X. Jia, Georgia Tech; M. Swaminathan, M. Mengozzi, Univ. of Bologna; Georgia Tech 09:30 G.P. Gibiino, Univ. of Bologna; A.M. Angelotti, Univ. of Bologna; C. Florian, Univ. of Bologna; A. Santarelli, Univ. of Bologna 09:40 We1A-6: Analysis of Electro-Thermal

Characterization of Substrate Integrated Suspended Line

S. Meng, Tianjin Univ.; K. Ma, Tianjin Univ.; Y. Wang, Tianjin Univ.

WEDNESDAY

IMS TECHNICAL SESSIONS Microwave Field, Device & Circuit Techniques Passive Components

Active Components

08:00 - 09:40 Wednesday, 22 June 2022 Systems & Applications Emerging Technologies & Applications

Colorado Convention Center

1A - 1C	1D-1F	4D-4F
We1E: High Power GaN RF and Microwave Power Amplifiers	We1F: Radar from Space to Ground (and Below) — The Synergy	We1G: mm-Wave and Terahertz Power Amplifiers and Front-End Modules
Chair: Nestor Lopez, <i>MIT Lincoln Laboratory</i> Co-Chair: Michael Roberg, <i>Qorvo</i>	Between Commercial, Government, and Metrology Applications	Chair: Taiyun Chi, <i>Rice Univ.</i> Co-Chair: Joe Qiu, <i>U.S. Army Research</i>
	Chair: Nils Pohl, Ruhr Univ. Bochum	Office
We1E-1: A 700–2800MHz Switchless Class-G Power Amplifier with Two- Quadrant Modulation for Back-Off Efficiency Improvement	We1F-1: Keynote: Recent Radar Advances and Their Impact Joseph Guerci, Information Systems	We1G-1: A Compact SiGe Stacked Common-Base Dual-band PA with 20/18.8dBm Psat at 36/64 GHz Supporting Concurrent Modulation
X. Chen, Tsinghua Univ.; M. Zhao, Tsinghua Univ.; W. Chen, Tsinghua Univ.; Z. Feng, Tsinghua Univ.	ciency Improvement Hen, Tsinghua Univ.; M. Zhao, ghua Univ.; W. Chen, Tsinghua Univ.;	
We1E-2: Investigation of Input Nonlinearity in Sequential Load Modulated Balanced Amplifiers	We1F-2: Upgrading the HUSIR Radar for Deep-Space Satellite Imaging M.D. Abouzahra, <i>MIT Lincoln Laboratory</i> ;	We1G-2: A 150–175GHz 30dB S21 G-Band Power Amplifier with 0.25W Pout and 15.7% PAE in a 250nm InP HBT Technology
C. Chu, Univ. College Dublin; T. Sharma, Renesas Electronics; S.K. Dhar, Renesas Electronics; R. Darraji, Ericsson; A. Zhu, Univ. College Dublin	M.E. MacDonald, <i>MIT Lincoln Laboratory</i> ; R.K. Lee, <i>MIT Lincoln Laboratory</i> ; D.L. Grimes, <i>MIT Lincoln Laboratory</i> ; B.H. Simakauskas, <i>MIT Lincoln Laboratory</i> ; N. Lopez, <i>MIT Lincoln Laboratory</i> ; C. Eckert, <i>MIT</i> ; J.M. Usoff, <i>MIT Lincoln Laboratory</i>	Z. Griffith, Teledyne Scientific & Imaging; M. Urteaga, Teledyne Scientific & Imaging; P. Rowell, Teledyne Scientific & Imaging; L. Tran, Teledyne Scientific & Imaging
We1E-3: Intrinsically Mode- Reconfigurable Load-Modulation Power Amplifier Leveraging Transistor's Analog-Digital Duality	We1F-3: Influence of Soil Moisture on the Detection of Buried Objects Using an Airborne GPSAR	We1G-3: A 2-Stage, 140GHz Class-B Power Amplifier Achieving 22.5% PAE a 17.3dBm in a 250nm InP HBT Technology
N.B. Vangipurapu, Univ. of Central Florida; H. Lyu, Univ. of Central Florida; Y. Cao, Univ. of Central Florida; K. Chen, Univ. of Central Florida	A. Grathwohl, Universität Ulm; B. Arendt, Technische Hochschule Ulm; T. Walter, Technische Hochschule Ulm; C. Waldschmidt, Universität Ulm	E. Lam, Univ. of California, Santa Barbara; K. Ning, Univ. of California, Santa Barbara; A. Ahmed, Univ. of California, Santa Barbara; M. Rodwell, Univ. of California, Santa Barbara; J.F. Buckwalter, Univ. of California, Santa Barbara
We1E-4: A 17.3–20.3GHz Doherty Power Amplifier with 14W Saturated Output Power and 28% PAE at 6dB	We1F-4: Frequency-Domain Characterization of Millimeter-Wave FMCW Signal Based on a Precisely	We1G-4: A Compact, 114GHz, High-Efficiency Power Amplifier in a 250nm InP HBT Process
OPBO in 150nm GaN Technology E. Richard, UMS; T. Huet, UMS; H. Moula Karimdjy, UMS; M. Camiade, UMS; C. Chang, UMS; V. Serru, UMS; F. Fernandez, Thales; J. Suedois, Thales; I. Davies, ESA-ESTEC; V. Valenta,	Synchronized NVNA Measurement Setup Y. Zhang, <i>NIM</i> ; D. Wu, <i>CATARC</i> ; H. Gao, <i>NIM</i> ; Z. He, <i>NIM</i> ; M. Nie, NIM	J.SC. Chien, Univ. of California, Santa Barbara; J.F. Buckwalter, Univ. of California, Santa Barbara
ESA-ESTEC	Wate E: Sparse Brassesing for Driver	Wolfe Er CoN on Si Ko Bond
We1E-5: A 50W CW 1–6GHz GaN MMIC Power Amplifier Module with Greater Than 30% Power Added Efficiency	We1F-5: Sparse Processing for Driver Respiration Monitoring Using In-Vehicle mmWave Radar	We1G-5: GaN-on-Si Ka-Band Single-Chip Front-End MMIC for Earth Observation Payloads
M. Roberg, <i>Qorvo</i> ; J. Zhang, <i>Qorvo</i> ; R. Flynt, <i>Qorvo</i> ; M. Irvine, <i>Qorvo</i>	Y. Rong, Arizona State Univ.; K.V. Mishra, U.S. Army Research Laboratory; D.W. Bliss, Arizona State Univ.	P.E. Longhi, Università di Roma "Tor Vergata"; F. Costanzo, Università di Rom "Tor Vergata"; L. Pace, Università di Rom "Tor Vergata"; W. Ciccognani, Università di Roma "Tor Vergata"; S. Colangeli, Università di Roma "Tor Vergata"; R. Giofré, Università di Roma "Tor Vergata"; R. Leblanc, OMMIC; F. Vitobelli
		REĂ; E. Limiti, Università di Roma "Tor Vergata"

10:10 -11:50

Wednesday, 22 June 2022

Colorado Convention Center

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 403-404 401-402 501-502 1A - 1C We2A: Advancements in Planar We2B: Advances in the We2C: AI/ML for RF and mm-Wave We2E: Advanced Linearization **Techniques for PAs and MIMO** and Substrate Integrated Filters **Characterization of Microwave and** Applications and Multiplexers mm-Wave Materials and **Transmitters** Chair: Rui Ma, MERL Components Chair: Christopher Galbraith, MIT Lincoln Co-Chair: Abhijit Chatterjee, Georgia Tech Chair: Anding Zhu, Univ. College Dublin Chair: David R. Jackson, Univ. of Houston Laboratorv Co-Chair: Pere L. Gilabert, Universitat Co-Chair: Dimitra Psychogiou, Univ. Co-Chair: Costas D. Sarris, Univ. of Politècnica de Catalunya College Cork Toronto We2A-1: Design of In-Line Filter With We2B-1: Limitations and Importance of We2E-1: Load-Modulation-Based IMD3 We2C-1: Deep Learning Enabled Inverse **Cross-Couplings Paths and Source EM Models for On-Wafer High Frequency** Design of 30-94 GHz Psat. 3dB SiGe PA **Cancellation for Millimeter-Wave Class-B CMOS Power Amplifiers Loaded Dangling Resonator Produced** Performance Evaluation **Supporting Concurrent Multi-band** Achieving EVM<1.2% **Transmission Zeros Operation at Multi-Gbps** N. Mahjabeen, Univ. of Texas at Dallas; Y. Zhang, Univ. of Minnesota; A. Dave, Univ. Y. Wu, Tianjin Univ.; K. Ma, Tianjin Univ.; Masoud Pashaeifar, Delft Univ. of Zheng Liu, Princeton Univ.; 10:20of Minnesota; J. Um, Univ. of Minnesota; Emir Ali Karahan, Princeton Univ.; Technology; Leo de Vreede, Delft Univ. of Y. Wang, Tianjin Univ. A. Harpel, Univ. of Minnesota; B. Stadler, Kaushik Sengupta, Princeton Univ. Technology; Morteza Alavi, Delft Univ. of We2A-2: Dual-Band SIW Filter with Univ. of Minnesota; R.R. Franklin, Univ. of Technology Widely Separated Passbands Based on Minnesota; R. Henderson, Univ. of Texas TE101 and TE301 Modes at Dallas Y. Zhu, UESTC; Y. Dong, UESTC; X. Luo, 10:30 UESTC; J. Bornemann, Univ. of Victoria We2B-2: Generation of High-Order We2C-2: An On-Chip Accelerator with We2E-2: Load-Mismatch Tracking Modes in Sub-THz Dielectric **Digital Predistortion for Mobile-Hybrid Machine Learning for Modulation** Waveguides by Misalignment of the **Classification of Radio Frequency Signals Terminal Power Amplifiers Transition Structure** X. Liu, Tsinghua Univ.; W. Chen, Tsinghua K. Jung, Georgia Tech; J. Woo, Georgia S. Smirnov, KTH; N. Xenidis, KTH; Tech; S. Mukhopadhyay, Georgia Tech Univ.; W. Chen, Huawei Technologies; J. Oberhammer, KTH; D.V. Lioubtchenko, Y. Guo, Huawei Technologies; Z. Feng, Tsinghua Univ. We2A-3: Miniaturized Tri-Band KTH We2C-3: RF Fingerprinting of LoRa **Bandpass Filter with Wide Stopband Transmitters Using Machine Learning** with Self-Organizing Maps for Cyber Using Stacked-Coupled SIDGS Resonators Intrusion Detection Y. Zhou, UESTC; D. Tang, UESTC; Y. Rao, UESTC; Y. Dong, UESTC; X. Luo, UESTC M. Nair, Univ. of Bristol; T. Cappello, Univ. of Bristol; S. Dang, Univ. of Bristol; We2B-3: A Mode-Matching-Based V. Kalokidou, Univ. of Bristol; M.A. Beach, We2E-3: Mixture of Experts Neural **Technique for Electromagnetic** Univ. of Bristol **Network for Modeling of Power Characterization of Anisotropic** Amplifiers Materials in Cylindrical Waveguides A. Fischer-Bühner, Nokia Bell Labs; R.R. Rodrigues. PUC-Rio: V.B. Cosenza. A. Brihuega, *Nokia* ; L. Anttila, *Tampere Univ.*; M.D. Gomony, *Nokia Bell Labs*; PUC-Rio; G.S. Rosa, PUC-Rio; ï We2A-4: A Compact K-/Ka-Band We2C-4: Design and Optimization of R.A. Penchel, Universidade de São Paulo M. Valkama, Tampere Univ. **Diplexer with Dual-Mode Folded SIW** T-Coil-Enhanced ESD Circuit with Cavities Upsampling Convolutional Neural Network N. Sielck, Technische Universität Hamburg; A. Sieganschin, Technische Z. Li, Univ. of Toronto; A. Chan Carusone, Universität Hamburg; K. Erkelenz, Univ. of Toronto Technische Universität Hamburg; We2B-4: Modeling Thick Metal in We2C-5: A Novel Convolutional-We2E-4: Hardware-Efficient A.F. Jacob, Technische Universität Forward Volume Spin Wave Transducers Autoencoder Based Surrogate Model **Implementation of Piece-Wise Digital** Hamburg for Fast S-Parameter Calculation of Predistorters for Wideband 5G Max Robbins, Univ. of Notre Dame; David Planar BPFs Transmitters Connelly, Univ. of Notre Dame; Jonathan Chisum, Univ. of Notre Dame R. Shibata, Saitama Univ.; M. Ohira, M. Almoneer, Univ. of Waterloo; 1:20Saitama Univ.: Z. Ma. Saitama Univ. H. Barkhordar-pour, Univ. of Waterloo; We2A-5: Miniaturized Quarter-Mode P. Mitran, Univ. of Waterloo; S. Boumaiza, SIW Filters Loaded by Dual-Mode Univ. of Waterloo **Microstrip Resonator with High** We2C-6: Zeroth-Order Optimization for Selectivity and Flexible Response Varactor-Tuned Matching Network Lin Gu, Yuandan Dong, Xun Luo, Univ. of M. Pirrone, Univ. of Colorado Boulder; 1:3 Electronic Science and Technology of E. Dall'Anese, Univ. of Colorado Boulder; China T. Barton, Univ. of Colorado Boulder We2E-5: An Intermodulation Distortion We2A-6: Miniaturized 28 GHz Packaged **Oriented 256-Element Phased-Array Bandpass Filter with High Selectivity Calibration for 5G Base Station** and Wide Stopband Using Multi-Layer We2C-7: Closed-Loop Antenna **PCB** Technology Y. Aoki, Samsung; Y. Kim, Samsung; **Impedance Tuning via Transfer Function** 1:40 Y. Hwang, Samsung; H. Kang, Samsung; S. Kim, Samsung; A.-S. Ryu, Samsung; Learning for 5G sub-6GHz User Yunbo Rao, Univ. of Electronic Science Equipment and Technology of China; Huizhen S.-G. Yang, Samsung Qian, Univ. of Electronic Science and Taha Yekan, Samsung Semiconductor, Inc.; Donghoon Lee, Samsung Technology of China; Jie Zhou, Univ. of Electronic Science and Technology of Semiconductor, Inc.; Pranav Dayal, China; Yuandan Dong, Univ. of Electronic Science and Technology of China; Xun Samsung Semiconductor, Inc.; Walid Y. Ali-Ahmad, Samsung 5 Luo, Univ. of Electronic Science and Semiconductor, Inc.

Technology of China

Wednesday, 22 June 2022 & Applications Emerging Technologies & Applications

Colorado Convention Center

Focus & Special Sessions

IMS TECHNICAL	SESSIONS	10:10	-11:5	0
Microwave Field, Device & Circuit Techniques	Passive Components	Active Compo	nents	Systems
1D-1F	4D-4F	four la cuto		W
We2F: Advanced Concepts for 77GHz Radar	We2G: mm-Wave and 1 System Demonstration Concepts			Wed
Chair: Wael A. Ahmad, <i>Keysight</i> Technologies Co-Chair: Alexander Koelpin, Technische	Chair: William R. Deal, <i>Noi</i> Grumman Co-Chair: Wooram Lee, Pe			Wed Chan
Universität Hamburg		ini State Univ.	10	Com
We2F-1: W-Band Active Repeater Arrays and Cognitive Receivers for OFDM Radar Networks	We2G-1: A 140GHz CMOS Transmit-Receive Phased- Link with 11–12Gbps and 64-QAM Operation	Array Wireless	10:10	
T. Liu, Univ. of Toronto; H.Y. Hsu, Univ. of Toronto; J. Hasch, Robert Bosch; S.P. Voinigescu, Univ. of Toronto	S. Li, Univ. of California, Sa G.M. Rebeiz, Univ. of Califo Diego		10:20	IEFE
We2F-2: A Harmonic Automotive Radar for Bicycle Detection with RFID Tags at 79/158GHz T.T. Braun, <i>Ruhr-Universität Bochum</i> ;	We2G-2: A W-Band, 92–1 Real-Time Spectral Efficie Demonstrating 10Gbps Pe Field Trial	ent Radio Link	10:30	Th sn
J. Schöpfel, Ruhr-Universität Bochum; C. Schweer, Ruhr-Universität Bochum; N. Pohl, Ruhr-Universität Bochum	M. Hörberg, B. Madeberg, H. Zirath, K. Bitsikas, K. Kra S. Tsapalis, <i>Ericsson</i> ; M. G G. Granström, <i>Gotmic</i> ; R. L Gotmic; D. Siomos, OTE Gr S. Agneessens, <i>Ericsson</i> ; J <i>Ericsson</i>	avariotis, avell, <i>Gotmic</i> ; övblom, oup;	10:40	an tui WI ne
We2F-3: High Angular Resolution Digital Beamforming Based on Combination of Linear Prediction and 1D-CLEAN for Automotive MIMO Radar	We2G-3: A 100GHz Fully I FMCW Imaging Radar in 1 with Fundamental Oscilla fmax/2 for Drywall Inspec	10nm CMOS tion Above	10:50	RF We (M
M.Q. Nguyen, Johannes Kepler Universität Linz; R. Feger, Johannes Kepler Universität Linz; D. Amarilda, ZF Friedrichshafen; M. Pichler-Scheder, LCM; A. Stelzer, Johannes Kepler Universität Linz	M. Tavakoli Taba, Univ. of M S.M.H. Nagnavi, Univ. of M M. Aseeri, KACST; E. Afsha Michigan	ichigan;	11:00	đ,
We2F-4: Efficient Bandwidth Enhanced	We2G-4: Measuring the 5		11:10	
Multirate Radar Target Simulation G. Körner, FAU Erlangen-Nürnberg; C. Birkenhauer, FAU Erlangen-Nürnberg;	Vapor Absorption Line wit Speckle Averaging K.B. Cooper, Jet Propulsion			
P. Stief, FAU Erlangen-Nürnberg; C. Carlowitz, FAU Erlangen-Nürnberg; M. Vossiek, FAU Erlangen-Nürnberg	B.J. Drouin, Jet Propulsion O. Pradhan, Jet Propulsion Jet Propulsion Lab; R. Rod Jet Propulsion Lab; D.J. Ne Propulsion Lab; R.J. Dengle Propulsion Lab; L.K. Tamp Propulsion Lab;	Lab; J.V. Siles, riguez Monje, mchick, Jet er, Jet	1:20	
			11:30	Snon
We2F-5: Design of a Wideband E-Band Radar Frontend for a Novel Incoherent Self-Mixing Radar Principle	We2G-5: 60Gbps 108GHz Dielectric Waveguide Inte Package Integrated Filter	rconnect with		Spon
J. Wörmann, Univ. Stuttgart; S. Ebeling, Univ. Stuttgart; B. Schoch, Univ. Stuttgart; I. Kallfass, Univ. Stuttgart	G.C. Dogiamis, Intel; T.W. E N. Prabhu Gaunkar, Intel; Y T.S. Rane, Intel; S. Ravikun V.B. Neeli, Intel; J.C. Chou, Intel	S. Nam, Intel; har, Intel;	11:40	

OMEN IN MICROWAVES (WIM)

Inesday, 22 June 2022

18:00 - 21:00

mbers Grant Salon, Opera House, Denver Performing Arts plex

Join us for a fun evening at IMS hosted by Women in Microwaves (WIM)!! This event welcomes all members of IMS to promote collaboration, with a spotlight on the work of female RF engineers and researchers.

ne evening starts with a technical poster session over nacks and open wine/beer bar. Join all attendees in a fun nd creative group Smith chart painting contest, to be rned into a MTT tee-shirt or poster. Get to know your fellow 'IM members in a friendly bingo game designed to help you etwork with some of our brightest up-and-coming female F engineers and researchers.

e hope to see all IMS2022 attendees there VIM, MIM and others)!

nsored By: licrowaves&RF

11:50

45

INDUSTRY WORKSHOPS

08:00 - 17:00

Wednesday, 22 June 2022

SESSION CODE	TIME & LOCATION	TITLE AND ABSTRACT	SPEAKER/S, AFFILIATION
IWWE1	08:00 - 9:40 Room: 205/207	Broadband Over Temperature Measurement Optimization For On Wafer Test We will highlight the best methods for setting up, calibrating, and evaluating measurement performance in coaxial and waveguide bands spanning WR15 (75 GHz) to WR1 (1100 GHz) over a broad (-40 to 125c) temperature range. A novel out single sweep measurement from 900 Hz to 220 GHz will be shown along with detailed complete automation of these measurements Hany programming examples using WinCalXE software will be demonstrated automating data measure- ment and analysis for on wafer measurements. We also evaluate system stability and performance. A very convenient approach is discussed to allow safe and convenience band swaps and probe installation.	Gavin Fisher, FormFactor
IWWE2	10:10 - 11:50 Room: 205/207	From Design to Manufacturing; mmWave IC and Heterogeneous RF Integration in One Design Flow The need to design and produce smaller, less expensive, and increasingly complex devices is the mantra of our industry. This has led to designs in smaller, more complex packages, smaller process nodes, and the use of multiple IC technologies, all within a shorter design cycle. This workshop will consider recent developments in EDA software that address the challenges of adopting advanced node silicon and heterogenous packaging technology for RF to mmWave applications.	Michael Thompson, Ron Pongratz <i>Cadence</i>
IWWE3	13:30 - 15:10 Room: 205/207	Latest RF Frontend Topologies Including Olmba Measurement-Aided Design 5G is here. The focus is on improving systems and enhancing capabilities. This drives the integration of components, extending bandwidth coverage per RF channel and improving energy efficiency. We will look at enhanced filter and amplifier design and testing. Load Modulated Balanced Amplifier (LMBA) structures offer typically Doherty levels of efficiency with increased bandwidth. The workshop will provide an overview of the latest technologies and requirements of RF frontends. Experts from test and measurement and industry partners will provide solutions that meet demanding requirements and help to develop latest LMBA topologies using a measure- ment-aided approach.	Diamond Liu, SynMatrix Technologies; Gareth Lloyd, Rohde & Schwarz; Salvatore Finocchiaro, QORVO, Inc.
IWWE4	15:40 - 17:00 Room: 205/207	0.03-6 GHz Up/Down Converter + FPGA (BytePipe) Toolbox for Matlab and Simulink We will demonstrate and discuss the BytePipe Toolbox for Matlab and Simulink which provides a set of tools for interfacing, modeling, and targeting designs using the BytePipe RF System on Module. The device interfaces will provide control and data streaming using MATLAB System Objects and Simulink Blocks. The control interface allows for configuration of components included in the Software Development Kit. This includes support for configuration of the ADI ADRV9002 Agile Transceiver and Xilinx ZynqMP Baseband Processor functions. Individual settings can be configured independently or as a whole. Design support includes filter/profile wizards, and tools commonly used in modem design.	Larry Hawkins, <i>Richardson</i> <i>RFPD</i>

Have You Had Your Shoes Shined Yet?

Get your shoes freshly shined outside the Exhibition Hall A entrance! Shoeshines are a time-honored tradeshow tradition. Stop by and relax your feet. You will walk away looking and feeling great!

Sponsored By:

PANEL SESSION

Room: 4A-4C

The Trend of Tiny AI: Will Ultra-Low-Power Fully-Integrated Cognitive Radios Become a Reality?

PANEL ORGANIZERS:

Jasmin Grosinger, Graz Univ. of Technology; Oren Eliezer, Apogee Semiconductor; Ke Wu, Polytechnique Montreal; J.-C. Chiao, Southern Methodist Univ.

PANELISTS:

Alyssa B. Apsel, Cornell Univ.; Nuno Borges Carvalho, Univ. of Aveiro; Scott Hanson, Ambiq; Gernot Hueber, Silicon Austria Labs; Tim Kwang-Ting Cheng, Hong Kong Univ. of Science and Technology **ABSTRACT:** The trend of tiny AI eventually paves the way towards realizing fully-integrated cognitive radios on energy-constrained devices, making Mitola's vision a reality. Currently, tiny AI-based devices operate at mW power consumption. Will uW power consumption become a reality? Will eventually cognitive radios exploiting tiny AI become a reality? In this panel, experts from multiple disciplines and IEEE societies will debate these questions and visions.

PANEL SESSION

Small Satellites and Constellations: Who Will Be the Winners of the New Race to Space?

12:10 - 13:20

PANEL ORGANIZERS:

Markus Gardill, Brandenburg Univ. of Technology; Steven Reising, Colorado State Univ.; Jan Budroweit, German Aerospace Center (DLR)

PANELISTS:

Klaus Schilling, Zentrum fuer Telematik (Center for Telematics); Jorge Ciccorossi, International Telecommunication Union (ITU); William Blackwell, MIT Lincoln Laboratory; Sachidananda Babu, NASA Earth Science Technology Office; Andreas Knopp, Universität der Bundeswehr München **ABSTRACT:** There is a true spirit of optimism in the current development of small satellites for low-earth-orbit. Entirely new opportunities have been created for education, science, and industry. Well-known examples range from the plethora of CubeSat projects to several announced or deployed mega-constellations. Nevertheless, how will the anticipated intensive use of LEO affect the environment and the frequency spectrum usage, and how can a sustainable and fair-share use of resources be ensured? Let's talk about this in our panel of leading experts from Small Businesses & Startups, Science and Education, Space Agencies, Communication, Regulation, and Space Debris.

Wednesday, 22 June 2022

Professional Headshots on the IMS Show Floor!

Join us in Booth 2000 to get a complimentary headshot photo.

Hours: Tuesday, Wednesday, and Thursday 11:50-13:00

During the Industry Hosted Reception on Wednesday **17:00-18:00**

Sponsored By:

13:30 -15:10

Wednesday, 22 June 2022

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 401-402 403-404 501-502 503-504 We3A: Advances in Passive We3B: Advances in Interconnects We3C: Towards Physically Secure We3D: LNAs and Receivers at **Devices Dedicated to Roberto Communication and Computation** W-band and Beyond Chair: Rhonda Franklin, Univ. of Sorrentino Minnesota Chair: Pekka Kangaslahti, Jet Propulsion Chair: John Hu, Oklahoma State Univ. Chair: Bayaner Arigong, Florida State Co-Chair: Georgios Dogiamis, Intel Laboratorv Co-Chair: Shreyas Sen, Purdue Univ. Co-Chair: Roee Ben-Yishay, Intel Co-Chair: Hualiang Zhang, UMass Lowell 13:30 We3D-1: A W/F-Band Low-Noise Power We3A-1: High-Q On-Chip Capacitors We3C-1: A Quantitative Analysis of We3B-1: Detachable Terahertz Amplifier GaN MMIC with 3.5–5.5-dB Noise Figure and 22.8–24.3-dBm Pout Featuring "Self-Inductance **Physical Security and Path Loss with Chip-to-Chip Interconnectors Frequency for IBOB Channel Cancellation**" for RF and mm-Wave H.-Y. Tsao, Univ. of Virginia; Y. Wang, Univ. Applications Arunashish Datta, Purdue Univ.; Mayukh F. Thome, Fraunhofer IAF; P. Brückner, of Virginia; R.M. Weikle, Univ. of Virginia; Arian Rahimi, Intel Corp.; Pratheesh A.W. Lichtenberger, Univ. of Virginia; Nath, Purdue Univ.; Baibhab Chatterjee, Fraunhofer IAF; S. Leone, Fraunhofer IAF; Somarajan, Intel Corp.; Qiang Yu, Intel N.S. Barker, Univ. of Virginia Purdue Univ.; Shovan Maity, Quasistatics; R. Quay, Fraunhofer IAF Corp.; Jeffrey Garrett, Intel Corp.; Shreyas Sen, Purdue Univ. Said Rami, Intel Corp.; Kalyan Kolluru, Intel Corp. 13:50 We3A-2: Millimeter-Wave High Q-Factor We3B-2: Fan-Out Wafer Level Packaging We3C-2: Detection of Rogue Devices We3D-2: A Flip-Chip 180GHz Receiver Sixteenth Mode SIW Cavity Resonator of GaN Traveling Wafer Amplifier **Using Unintended Near and Far-Field** in 40nm CMOS Implemented in 0.18µm CMOS **Emanations with Spectral and Temporal** D. Schwantuschke, Fraunhofer IAF; H.-S. Chen, National Tsing Hua Univ.; Technology **Signatures** E. Ture, Fraunhofer IAF; T. Braun, Y.-L. Hu, National Tsing Hua Univ.; S.K. Thapa, Kyushu Univ.; R.K. Pokharel, Fraunhofer IZM; T.D. Nguyen, Fraunhofer Md.F. Bari, Purdue Univ.; M. Roy W.-C. Chang, National Tsing Hua Univ.; 14 Kyushu Univ.; B. Chen, Kyushu Univ.; IZM; M. Wöhrmann, Fraunhofer IZM; Chowdhury, Purdue Univ.; B. Chatterjee, J.Y.-C. Liu, National Tsing Hua Univ. ġ T. Fukuda, Kyushu Univ.; A. Barakat, M. Pretl, Rohde & Schwarz; S. Engels, Purdue Univ.; S. Sen, Purdue Univ. Kyushu Univ. Rohde & Schwarz 14: 10 We3A-3: A 16:1 Bandwidth Planar Balun We3B-3: Fused-Silica Stitch-Chips with We3C-3: Electromagnetic Analysis of We3D-3: A Fully-Differential 146.6-Integrated On-Chip Sensing Loop for 157.4GHz LNA Utilizing Back Gate with Low Common Mode Impedance **Compressible Microinterconnects for** Embedded RF/mm-Wave Chiplets Side-Channel and Fault-Injection Attack Control to Adjust Gain in 22nm FDSOI D. Gustafsson, Ericsson; P. Ingelhag, Detection Ericsson; K. Andersson, Ericsson; T. Dahl, T. Zheng, Georgia Tech; M.S. Bakir, P.J. Artz, Technische Universität Berlin; Ericsson; R. Lindman, Ericsson; R. Georgia Tech Archisman Ghosh. Purdue Univ.: Mavukh P. Scholz. Technische Universität Berlin: 14:20T. Mausolf, IHP; F. Gerfers, Technische Nath, Purdue Univ.; Debayan Das, Purdue Lundqvist, Ericsson Univ.; Santosh Ghosh, Intel Corp.; Shreyas Universität Berlin Sen. Purdue Univ. ы We3A-4: Rectangular Waveguide We3B-4: High-integration and Low-cost We3C-4: Metamaterial-Enabled 2D We3D-4: Experimental Characterization **Radial Combiners Based on Curvilinear Transmitter Packaging Solution for 0.2** Directional Modulation Array of Temperature-Dependent Microwave **Matching Sections THz SiP Application Using HTCC Transmitter for Physical Layer Security in** Noise of Discrete HEMTs: Drain Noise Technology Wireless Communication Links and Real-Space Transfer M.M. Fahmi, DRDC; R.R. Mansour, Bo Yu, Zhigang Wang, Univ. of Electronic S. Vosoughitabar, Rutgers Univ.; Univ. of Waterloo B. Gabritchidze, Caltech; K. Cleary, 14:40 Science and Technology of China; A. Nooraiepour, Rutgers Univ.; Caltech; J. Kooi, Jet Propulsion Lab; Peng Wu, Chinese Academy of Sciences; W.U. Bajwa, Rutgers Univ.; N. Mandayam, I. Esho, Caltech; A.C. Readhead, Caltech; Oupeng Li, Hua Cai, Jia He, Guangjian Rutgers Univ.; C.-T.M. Wu, Rutgers Univ. A.J. Minnich, Caltech Wang, Huawei Technologies Co., Ltd.; Ruimin Xu, Univ. of Electronic Science and Technology of China 14:50 We3B-5: 110GHz Nanowire-Based We3A-5: Novel Waveguide Connectors We3C-5: RF-PSF: Zero-Trust Radio to Simplify Microwave and Millimeter-Integrated Via Technology for 3D Silicon **Frequency Process Specific Functions** Wave Component Packaging as Process Distinction Method Integration Y. Zhang, Univ. of Minnesota; J. Um, Y. Shu, Eravant; L. Ren, Eravant Md.F. Bari, Purdue Univ.; B. Chatterjee, Univ. of Minnesota: N. Mahiabeen. Purdue Univ.; L. Duncan, KBR; S. Sen, 15:00 Univ. of Texas at Dallas; B. Stadler, Purdue Univ. Univ. of Minnesota; R. Henderson, Univ. of Texas at Dallas; R.R. Franklin, Univ. of Minnesota 15:10

IS 13:30 -15:10

.0 Wednesday, 22 June 2022

2022 Colorado Convention Center

Focus & Special Session

Microwave Field, Device & Circuit Techniques	Passive Components	Active Component	ts Systems & Applications	Emerging Te	echnologies	& Applications
1A - 1C	1D-1F		4D-4F			1- 1
We3E: New Advances in RF Circuits and Systems	We3F: Cognitive Radar		We3G: mm-Wave and Te Signal Generation	rahertz		R30
Chair: John Papapolymerou, Michigan State Univ. Co-Chair: Linda Katehi, Texas A&M Univ.	Chair: Joe Guerci, Informatio Laboratories		Chair: Richard Al Hadi, <i>Alca</i> Co-Chair: Ahmed Gadallah,			d'
Ne3E-1: High Density Integration/ Multi-Function Assemblies, Photonics, and mm-Wave Components	We3F-1: Cognitive Radar Tr Spectrum Sensing and Pred K. Bell, <i>Metron</i> ; B. Shapo, <i>M</i>	diction	We3G-1: A 237–263GHz Cl Frequency Doubler with 0.9 Power and 2.87% Power Eff Based on Harmonic Matchy	dBm Output ficiency	13:30	
A. Gutierrez-Aitken, Northrop Grumman		-	Based on Harmonic Watch Core BT. Moon, <i>KAIST</i> ; B. Yun, <i>K.</i> SG. Lee, <i>KAIST</i>		13:40	The sea
We3E-2: A 4GHz Digital Class-E	We3F-2: Joint Design of Ra	dar	We3G-2: A 250–300GHz Fr	equency	13:50	P
Dutphasing PA F. Hoffmann, FBH; L. Schellhase, FBH; H. Usiprich, FBH: A. Wontrol, FBU	Transmit-Receive Pair in His Reverberating and Congest Environments	ed	Multiplier-by-8 Chain in SiG Technology		-	mar
N. Heinrich, FBH; A. Wentzel, FBH	A. Aubry, Università di Napo S. De Fenza, Università di Na II; A. De Maio, Università di I Federico II	li Federico II; apoli Federico	A. Gadallah, <i>IHP</i> ; M.H. Eissa T. Mausolf, <i>IHP</i> ; D. Kissinger, <i>Ulm</i> ; A. Malignaggi, <i>IHP</i>		14:00	
Ne3E-3: An X/Ku Dual-Band GaAs MMIC Power Amplifier with Integrated Load Impedance Sensing	We3F-3: A Fast Impedance Implementation in a Cognit Synchronous Real-Time Opi	ive Radar for	We3G-3: 61.5GHz Energy-E Super-Regenerative Oscilla Tunable Quench Duty Cycle	tor with	14:10	Do Ind
D.T. Donahue, Univ. of Colorado Boulder; 2 Zurek, Univ. of Colorado Boulder; 2. Popovic, Univ. of Colorado Boulder; 3. Barton, Univ. of Colorado Boulder	a Congested Environment J. Roessler, Baylor Univ.; A. E Univ.; T. Van Hoosier, Baylor S. Seguin, Baylor Univ.; A. M C. Baylis, Baylor Univ.; R.J. M Baylor Univ.	Egbert, Baylor Univ.; artone, ARL;	A. Ferschischi, Technische U Dresden; H. Ghaleb, Technis Universität Dresden; C. Cart Universität Dresden; F. Elling Technische Universität Dresd	sche a, Technische ger,	14:20	Re We
Ve3E-4: Three-Dimensional Active ncoherent Millimeter-Wave Imaging Jsing Noise Pulse Integration	We3F-4: Radar Concepts for Non-Destructive Testing		We3G-4: 15 to 72GHz Clos Impairment Corrected mm Delay-Locked IQ Modulator	Wave	14:30	17
B. Vakalis, Michigan State Univ.; R. Colon-Berrios, Michigan State Univ.; A. Nanzer, Michigan State Univ.	D. Nuessler, Fraunhofer FHR Fraunhofer FHR; A. Froehly, FHR; S. Gütgemann, Fraunh	Fraunhofer	Applications I. Martinez, Keysight Techno	logies	14:40	IMS
Ve3E-5: A High Bandwidth Energy Efficient Linear Transimpedance Amplifier for Short-Range 100GBd PAM-4 Applications			We3G-5: A Coherent 233-2 Scalable 1D Array in 28nm Using Sub-Harmonic Inter-1 Leakage	Bulk CMOS	14:50	
C. Bohn, <i>KIT</i> ; A.Ç. Ulusoy, <i>KIT</i>			S. Londhe, Tel Aviv Univ.; E. S Tel Aviv Univ.	Socher,	15:00	

Don't Miss the Industry Hosted Reception on Wednesday, 22 June from **17:00–18:00** on the IMS Show Floor!

15:10

rowav	e Field, Device & Circuit Techniques Passiv	e Components Active Components Syst	tems & Applications Emerging Technologies & A	pplications Focus & Special Sessions	
	401-402	403-404	501-502	503-504	
	We4A: Advances in mm-Wave Passive Components & Systems	We4B: Advanced Manufacturing and Novel Substrates	We4C: Advanced System Architectures and Concepts	We4D: Advances in Low-Powe CMOS Low Noise Amplifiers (LNAs)	
	Chair: Holger Maune, OvG Universität Magdeburg Co-Chair: Srinivas Prasad Mysore Nagaraja, Jet Propulsion Laboratory	Chair: Premjeet Chahal, <i>Michigan State</i> Univ. Co-Chair: Valentina Palazzi, <i>Università di</i> Perugia	Chair: Kavita Goverdhanam, U.S. Army CCDC C5ISR Center Co-Chair: Ruochen Lu, Univ. of Texas at Austin	Chair: Shirin Montazeri, Google Co-Chair: Edward Niehenke, Niehenk Consulting	
15:40	We4A-1: A 300-GHz Band Chip-to- Waveguide Transition on Proton- Irradiated Standard 65nm CMOS Si	We4B-1: Integrated and Miniaturized Quasi Yagi D-Band Antenna in Glass Interposer	We4C-1: 2–8 GHz Interference Detector with 1.1 µs Response Mohammad Abu Khater, <i>Purdue Univ</i> .:	We4D-1: A 3.2mW 2.2–13.2GHz CM Differential Common-Gate LNA for Ultra-Wideband Receivers	
15:50	Substrate for Flip-Chip Packaging Implementation H. Herdian, <i>Tokyo Tech</i> ; T. Inoue, <i>SHI-ATEX</i> ; M. Sogabe, <i>SHI-ATEX</i> ; A. Shirane, <i>Tokyo Tech</i> ; K. Okada, <i>Tokyo</i> <i>Tech</i>	S. Erdogan, Georgia Tech; KS.J. Moon, Georgia Tech; M. Kathaperumal, Georgia Tech; M. Swaminathan, Georgia Tech	Dimitrios Peroulis, <i>Purdue Univ.</i>	L. Zhang, Univ. of California, Davis; N.L.K. Nguyen, Univ. of California, Dav J. Chen, Univ. of California, Davis; O. Momeni, Univ. of California, Davis; X. Liu, SUSTech	
16:00	We4A-2: A Ka-Band Wideband Monolithically Metallic 3-D Printed Turnstile Junction Orthomode Transducer with Shaped Internal Profile	We4B-2: Flexible and Scalable Additively Manufactured Tile-Based Phased Arrays for Satellite Communication and 5G mmWave	We4C-2: A 140–500GHz CMOS THz Spectroscope with 1MHz Resolution Based on Multi-Branch Rotational Symmetric Sensing Surface	We4D-2: Design and Implementatio a 3.9-to-5.3GHz 65nm Cryo-CMOS I with an Average Noise Temperature 10.2K	
16:10	S. Chen, Shenzhen Univ.; J. Li, Shenzhen Univ.; Z. Xu, Shenzhen Univ.; T. Yuan, Shenzhen Univ.	Applications K. Hu, Georgia Tech; G. Soto-Valle, Georgia Tech; Y. Cui, Georgia Tech; M.M. Tentzeris, Georgia Tech	C. Pi, UESTC; H.J. Qian, UESTC; T. Wang, UESTC; J. Zhou, UESTC; Z. Deng, UESTC; Y. Shu, UESTC; X. Luo, UESTC	S. Das, UMass Amherst; S. Raman, UMass Amherst; J.C. Bardin, Google, UMass Amherst	
16:20	We4A-3: A Dual-Band Feed Network for Highly Integrated K-/Ka-Band Phased Array Front-Ends	We4B-3: Additively Manufactured Slotted Waveguides for THz Applications A. Hofmann, FAU Erlangen-Nürnberg;	We4C-3: Noninvasive Continuous Blood Pressure Monitoring Based on Wearable Radar Sensor with Preliminary Clinical Validation	We4D-3: Sub-mW 30GHz Variable-G LNA in 22nm FDSOI CMOS for Low-Power Tapered mm-Wave 5G/6 Phased-Array Receivers	
16:30	K. Erkelenz, Technische Universität Hamburg; N. Sielck, Technische Universität Hamburg; A.F. Jacob, Technische Universität Hamburg	K. Lomakin, FAU Erlangen-Nürnberg; M. Sippel, FAU Erlangen-Nürnberg; G. Gold, FAU Erlangen-Nürnberg	L. Wen, SJTU; S. Dong, SJTU; Z. Zhang, Shanghai General Hospital; C. Gu, SJTU; J. Mao, SJTU	M. Spasaro, <i>Aarhus Univ.</i> ; D. Zito, <i>Aar</i> Univ.	
16:40	We4A-4: Dual-Resonance mmWave Antenna Matching Network Comprised of Separated Ground Layers and Via Posts for Adjustable Return Current	We4B-4: 3D Printed Wideband High-Power X-Band Radial Combiner N. Lopez, MIT Lincoln Laboratory;	We4C-4: Measurement of Displacement Motions Based on Unsynchronized Bandpass Sampling with a Low-IF Doppler Radar	We4D-4: An Ultra-Low Power E-banc Low Noise Amplifier with Three Stac Current Sharing Amplification Stage 28-nm CMOS	
16:50 17:00	Path Modification Y. Youn, POSTECH; J. Choi, LG Innotek; B. Kim, POSTECH; W. Hwang, POSTECH; W. Hong, POSTECH	A.E. Fathy, Univ. of Tennessee; M.D. Abouzahra, MIT Lincoln Laboratory; J. Blandford, MIT Lincoln Laboratory; R. Kazemi, Univ. of Tennessee; C.J. Bauder, Univ. of Tennessee; C. Eckert, MIT	F. Tong, S <i>JTU</i> ; J. Liu, S <i>JTU</i> ; C. Gu, S <i>JTU</i> ; J. Mao, S <i>JTU</i>	Liang Qiu, Zhejiang Univ.; Jiabing Liu, Zhejiang Univ.; Qianyi Dong, Zhejiang Univ.; Zhihao Lv, Zhejiang Univ.; Kailoi Zhao, Zhejiang Univ.; Shengjie Wang, Zhejiang Univ.; Yen-Cheng Kuan, Nati Chiao Tung Univ.; Q. Jane Gu, Univ. of California, Davis; Xiaopeng Yu, Zhejian Univ.; Chunyi Song, Zhejiang Univ.; Zh Xu, Zhejiang Univ.	

50

WEDNESDAY

			INTERACTIVE RADAR/AERO			
1D-1F	4D-4F					
We4F: Advanced Radar OF * Imaging and Signal Processing	We4G: mm-Wave and Terahertz Integrated Circuits and Components		WEIF2 OF 1 Chairs: Akim Babenko	15:10 – 1), Justus Br		Room: 2A–3B bert Horansky, <i>NIST</i>
Chair: Suresh Venkatesh, Princeton Univ. Co-Chair: Rudy Emrick, Northrop Grumman	Chair: Theodore Reck, <i>Virginia Diodes</i> Co-Chair: Lei Liu, <i>Univ. of Notre Dame</i>	_	WEIF2-1: Plenary Poster: Earth Observation with Microwave Radiometers – Miniaturization Al-based Solutions	h	WEIF2-4: Delay Tran Capacitor	Tunable MMIC Negative Group Isversal Filter-Based Negative in 0.1-µm GaAs pHEMT Technolog Itgers Univ.; A.YK. Chen, California
We4F-1: A 75GHz Dynamic Antenna Array for Real-Time Imageless Object Detection via Fourier Domain Filtering	We4G-1: High-Gain 670-GHz Amplifier Circuits in InGaAs-on-Insulator HEMT Technology	15:40	Pekka Kangaslahti, Shannon Bro Bosch-Lluis, Sid Misra, Sharmila Padmanabhan, Jet Propulsion L Bill Deal, Northrop Grumman Co	a .ab;	State Univ. CT.M. Wu	, Northridge; , Rutgers Univ. Compact Asymmetrical
D. Chen, Michigan State Univ.; S. Vakalis, Michigan State Univ.; J.A. Nanzer, Michigan State Univ.	Laurenz John, Axel Tessmann, Arnulf Leuther, Thomas Merkle, Hermann Massler, Sebastien Chartier, Fraunhofer Institute for Applied Solid State Physics	15:50	WEIF2-10: Characterization and of EVM Hump Based on Transmit and AM-PM Characteristics		Bandwidt	lode Doherty PA with 30% h and 80Watt Output Power echt, R. Negra, hen Univ
	Institute for Applied Solid State Physics	0	S. Farsi, Meta; Y. Wang, W. Ali-Ahma	ad, Samsung		Ultra-Wideband Microstrip to
			WEIF2-11: Analysis and Experime Impact of Frequency Ramp Nonli	nearity on		Integrated Waveguide (SIW)
We 45 On loss of Declet Coursed		16:00	Range Resolution and Accuracy i Radars	in LFMCW	A. Zerfaine	e, T. Djerafi, <i>INRS-EMT</i>
We4F-2: Incoherent Point Spread Function Estimation and Multipoint Deconvolution for Active Incoherent	We4G-2: Wideband Switchable- Capacitor Loaded Differential Phase Shifter with Lattice Structures	0	Z. Zhang, J. Liu, C. Gu, J. Mao, S <i>JTL</i>	J	Flat No-Le	A Novel High Power Plastic Quad ad Package Structure for RF GaN
Millimeter-Wave Imaging	ter-Wave Imaging Ion-Berrios, Michigan State avros Vakalis, Michigan State Univ.; M. Jung, Univ. of California, San Diego; BW. Min, Yonsei Univ.; Aniel Chen, Michigan State Univ.;		WEIF2-12: 5.8GHz Highly Sensiti Linear Doppler Radar Using Digit Self-Injection-Locking Technolog	al		o, JC. Chiu, PK. Tseng, YC. Lai,
Univ.; Stavros Vakalis, Michigan State Univ.; Daniel Chen, Michigan State Univ.; Jeffrey Nanzer, Michigan State Univ.		16:10	WC. Su, CH. Chang, TS. Horng, National Sun Yat-sen Univ.		WEIF2-8:	ng, WIN Semiconductors Reducing FDD MMU Form Factor e Cancellation
			WEIF2-13: Cost-Efficient Baseba Hybrid MIMO Systems with Shall Artificial Neural Networks		K. Muham	mad, J. Yuan, S. Zhang, C. Tarver, X. I. Li, J. Moon, M. Tonnemach, G. Xu,
We4F-3: Received Signal Strength Estimation in Indoor Environment using	We4G-3: A New 77GHz Sampling Mixer in 28nm FD-SOI CMOS Technology for Automotive Radar Application	16:20	P. Jueschke, T. Stedile-Ribeiro, Nok G. Fischer, FAU Erlangen-Nürnberg		WEIF2-9: Power Am	10W High Efficiency GaN-Si MMIC plifier for 17.3–20.2GHz Onboard
High Frequency Rytov Approximation Amartansh Dubey, Hong Kong Univ. of	A. Flete, STMicroelectronics; C. Viallon, LAAS-CNRS; P. Cathelin,		WEIF2-2: Accumulative Mill Rolled Pd Foil Based H2 Getter for Improving Microwave Device Reliability Satellite Use H. Xia, J. Vriens, D. DeWire, Hermetic Solutions Group P. Colantonio, Università di Roma Vergata"; M. Lopez, L. Cabria, TT, F. Vitobello, REA; R. Giofrè, Univer "Tor Vergata"			nio, Università di Roma "Tor
Science and Technology; Samruddhi Deshmukh, The Hong Kong Univ. of Science and Technology; Dingfei Ma, The Hong Kong Univ. of Science and	STMicroelectronics; T. Parra, LAAS-CNRS	16:30				o, REA; R. Giofrè, Università di Roma
Technology; Ross Murch, The Hong Kong Univ. of Science and Technology			WEIF2-3: A Flexible Implement Ka-Band Active Phased Array fo Communication			
We4F-4: A 300–1300MHz Single Antenna Digital-FMCW Ground Penetrating Radar for the Mars	We4G-4: A 190-to-220GHz 4-Bit Passive Attenuator with 1.4dB Insertion Loss and Sub-0.4dB RMS Amplitude	16:40	X. Wang, D. You, X. Fu, H. Lee, Tokyo Z. Li, Tokyo Tech; D. Awaji, Fujikura; Shirane, H. Sakamoto, K. Okada, To	; J. Pang, A.		
Science Helicopter with Switched-Gain Calibration to Improve Dynamic Range	Error Using Magnetically Switchable Coupled-Lines in 0.13µm CMOS		IMS INDUSTRY PAPER	HARDWAR	RE DEMONSTRATIONS	
A. Tang, Jet Propulsion Lab; E. Decrossas, Jet Propulsion Lab; Y. Gim, Jet Propulsion	Technology N. Zhu, Tianjin Univ.; F. Meng, Tianjin Univ.	16:50	Room: 2A-3B	15:40-17	:00	
Lab; R. Beauchamp, Jet Propulsion Lab; S. Culaclii, Jet Propulsion Lab	p; R. Beauchamp, Jet Propulsion Lab;		New this year, the IMS Industry Paper Hardware Demos is an opportunity for invited authors to provide a live demonstration of their research. It is co-located with the Interactive Forum.			
We4F-5: Thickness Profile Estimation of		17:00	Paper Title			Speaker/s, Affiliation
Fluid-Carrying Non-Metallic Pipes M.B. Shah, NYIT; Y. Gao, NYIT; M. Ravan, NYIT; R.K. Amineh, NYIT		0	System Simulation Through Beh Embedded Equation Solver for t Linearized Power Amplifier Perfor Stage Tu1B-5	the Prediction of	ofthe	Silvia Hernandez, AMCAD Engineering
			Silicon Micromachined Metrolo 0.5-1.1 THz TU1F1-6	ogy Componen	ts for	James Campion, KTH
			Novel Waveguide Connectors to and Millimeterwave Componen			Yonghui Shu, Eravant
			A Novel OTA Near Field Measure	mont Approa	h	

Thomas Deckert, National

Instruments

A Novel OTA Near-Field Measurement Approach Suitable for 5G mmWave Wideband Modulated Tests |

Th1F-3

MIC	ROAPPS	S	09:30 - 17:00	Wednesday, 22 June 2022	IMS Show Floor: Booth 9110
SESSION CODE	ТІМЕ	TITLE		SPEAKER/S, AFFILIATIONS	
WEMA31	09:30 - 9:45		rsis and Model Development	for Silicon Chips	Nikolas Provatas, <i>Cadence</i>
WEMA32	09:45 - 10:00	-	rements from Advanced R&D) to Production	Matt Maxwell, Rohde & Schwarz
WEMA33	10:00 - 10:15	Realtime VNA Meas	urement Uncertainty Accurac	су	Rich Pieciak, Rohde & Schwarz GmbH & Co KG
WEMA34	10:15 - 10:30	RF Filters for Space	Applications		Tim Brauner, Knowles Precision Devices
WEMA35	10:30 - 10:45	Selecting Microwave	e Electromechanical Switche	s for ATE Applications	Krzysztof Ciezarek, Microwave Products Group
WEMA36	10:45 - 11:00	Single Sweep Broad Transistor and IC Tes		ments to mm-wave for Semiconductor	Gavin Fisher, FormFactor
WEMA37	11:00 - 11:15	Summing Power: Po	wer Combining Trade-Offs an	nd Requirements	Shaun Moore, TRM Microwave
WEMA38	11:15 - 11:30	TFLE-Thin Film Lump	ed Elements Reflective and	Non-Reflective Filtering Solutions	Rafi Hershtig, K&L Microwave
WEMA39	11:30 - 11:45	VNA Application Sol	utions for S-parameter Meas	urements in Large Test Setups	Navneet Kataria, Anritsu Co.
WEMA40	11:45 - 12:00	VSWR, Return Loss,	and the Best Directivity Mon	ey Can Buy	Doug Jorgesen, Marki Microwave
WEMA41	12:00 - 12:15	10MHz-30GHz USB	-Configurable Front-End Mod	dule	Sidina Wane, eV-Technologies; Joel Kirshman, StarWave-US LLC
WEMA42	12:15 - 12:30	16-port RF-mmW US	SB-Controlled Switch Matrix	and Correlator	Sidina Wane, eV-Technologies; Joel Kirshman, StarWave-US LLC
WEMA43	12:30 - 12:45	A New Miniature Ato	mic Clock for Ruggedized C5	ISR Applications	Stavros Melachroinos, Orolia
WEMA44	12:45 - 13:00	Fast Switching, High	Performance PLL and Quad	Kieran Barrett, Analog Devices, Inc.	
WEMA45	13:00 - 13:15	GaN Nonlinear Large Design Success	e Signal Model – A Necessar	Yueying Liu, Cree Semiconductor	
WEMA46	13:15 - 13:30	Microwave Signal Ge	enerators with Improved Pha	se Noise and Frequency Stability	Alexander Chenakin, Suresh Ojha, Sadashiv Phadnis, Anritsu Company
WEMA48	13:45 - 14:00	PA Design Using Nor	nlinear Embedding Models		Chris DeMartino, Modelithics
WEMA49	14:00 - 14:15	XMA: Advancements Challenges Moving F	s Within Quantum Enabling R Forward	F Technologies and	Del Pierson, XMA Corporation
WEMA50	14:15 - 14:30	Aerogel Film as a Mi	crowave Substrate		John Gardner, Blueshift
WEMA51	14:30 - 14:45	Single Connection F	requency Converter Measure	ements	Rich Pieciak, Rohde & Schwarz GmbH & Co KG
WEMA52	14:45 - 15:00	5G NR Challenges a	nd Trends in RFFE Design		Peter Bacon, pSemi, a Murata Company
WEMA53	15:00 - 15:15	5G Private and Non-	Terrestrial Network Design		Paul Moakes, CommAgility
WEMA54	15:15 - 15:30	A New MIMO Over-th Adaptation	ne-Air Test Methodology usin	g Dynamic Channel Models and Link	Michael Foegelle, ETS-Lindgren
WEMA55	15:30 - 15:45	Achieve Best EVM P	erformance for Modulated Si	gnals in the Millimeter Wave Range	Melanie Mauersberger, Rohde & Schwarz
WEMA56	15:45 - 16:00	Achieving Multi Gbp	s Data Rates in Non-terrestri	al Applications	Tudor Williams, Filtronic
WEMA57	16:00 - 16:15	Automatic Configura -RCS2 Signals	ation of Modulation Quality N	leasurements for DVB-S2(X) and	Florian Ramian, <i>Rohde & Schwarz GmbH & Co KG</i>
WEMA58	16:15 - 16:30	Characterize Faster Fast Continuous Sca	Phased Array Antennas Over- anning	The-Air Using	Gerardo Orozco, NI (National Instruments)
WEMA59	16:30 - 16:45	Cutting Through the Using the Latest So(h Edge Sensors with the Secure Cloud	Bob Muro, Mercury Systems
WEMA60	16:45 - 17:00	DC to 64Gbps Micro Productivity	Relay with Integrated Driver,	, A Simplified Solution to Increase	Eric Carty, Analog Devices

Sponsored By:

ROHDE & SCHWARZ Make ideas real

We are delighted to introduce the 2022 recipients of MTT-S Society Awards. Congratulations to all the awardees for being recognized for their outstanding contributions to the field of microwave theory and techniques, significant achievements in their career, or distinguished services to the society. The MTT-S Awards Banquet program includes dinner, entertainment, and technical and service awards presented by the MTT-S Awards Committee.

MTT-S AWARDS	2022 AWARD RECIPIENTS AND DESCRIPTIONS
Microwave Career Award recognizes a career of meritorious achievement and outstanding technical contribution by an individual in the field of microwave theory and techniques.	Wolfgang J. R. Hoefer —for a career of leadership, meritorious achievement, creativity and outstanding contributions in the field of microwave theory and techniques.
Microwave Pioneer Award recognizes an individual or a team not exceeding three persons having made outstanding pioneering technical contributions that advance microwave theory and techniques, which are described in an archival paper published at least 20 years prior to the year of the award.	Kenneth Carr —for outstanding contributions in the field of microwave theory and techniques.
Distinguished Service Award recognizes an individual who has given outstanding service for the benefit and advancement of the MTT Society.	Madhu S. Gupta—for outstanding contributions in the field of microwave theory and techniques.
Distinguished Educator Award recognizes a distinguished educator in the field of microwave engineering and science who best exemplifies the special human qualities of Fred Rosenbaum, who considered teaching a high calling and demonstrated his dedication to the Society through tireless service.	Ke Wu — for outstanding achievements as an educator, mentor, and role model of microwave engineers and engineering students.
Microwave Application Award Recognizes an individual or team of no more than five individuals for an outstanding application of microwave theory and techniques, which has been reduced to practice nominally 10 years before the award.	Matthew A. Morgan—for the creation of a new class of reflectionless filters.
	Anthony Ghiotto—for outstanding early career achievements in substrate integrate waveguide technologies and exemplary service to the society.
Outstanding Young Engineer Award recognizes an outstanding young MTT-S member who has distinguished him/herself through achievement(s), which may	Xun Luo—for outstanding early career achievements in the field of microwave passive and integrated circuits with applications in wireless communication.
be technical (within the MTT-S Field of Interest), may be exemplary service to the MTT-S, or may be a combination of both.	Bodhisatwa Sadhu —for outstanding early career contributions to RF and millimeter-wave circuits and systems.
	Alexis Zamora – for outstanding early career contributions to the solid-state terahertz field.
MTT-S BEST PAPER AWARDS	
Microwave Prize recognizes, on an annual basis, the most significant contribu- tion by a published paper to the field of interest of the MTT-S. The Microwave Prize is the Society's oldest Award.	S. Zhang, R. Lu, H. Zhou, S. Link, Y. Yang, Z Li, K. Huang, X. Ou, and S. Gong—for their paper "Surface Acoustic Wave Devices using Lithium Niobate on Silicon Carbide", <i>IEEE Transactions on Microwave Theory and Techniques</i> , vol. 68, no. 9, pp. 3653-3666, September 2020.
MCWL "Tatsuo Itoh" Award recognizes, on an annual basis, the most significant contribution in a paper published in the <i>IEEE Microwave and Wireless Component Letters</i> .	0. El-Aassar, and G. Rebeiz —for their paper "A 120-GHz Bandwidth CMOS Distributed Power Amplifier with Multi-Drive Intra-Stack Coupling", <i>IEEE Microwave and Wireless Components Letters</i> , vol. 30, no. 8, pp. 782-785, August 2020.
T-TST Best Paper Award recognizes, on an annual basis, the most significant contribution in a paper published in the <i>IEEE Transactions on Terahertz Science and Technology</i> .	L. John, A. Tessmann, A. Leuther, P. Neininger, T. Merkle, and T. Zwick— for their paper "Broadband 300-GHz Power Amplifier MMICs in InGaAs mHEMT Technology," <i>IEEE Transactions on Terahertz Science and Technology</i> , vol. 10, no. 3, pp. 309-320, May 2020.
IEEE Microwave Magazine Best Paper Award recognizes, on an annual basis, the most significant contribution in a paper published in the <i>IEEE Microwave Magazine</i> .	J.C. Bardin, D. Sank, O. Naaman, and E. Jeffrey—for their paper "Quantum Computing: An Introduction for Microwave Engineers," <i>IEEE Microwave</i> <i>Magazine</i> , vol. 21, no. 8, pp. 24-44, August 2020.

ADVANCED PRACTICE AND INDUSTRY PAPER COMPETITIONS

The Advanced Practice Paper Competition (APPC) recognizes outstanding technical contributions that apply to practical applications. All finalist papers are on advanced practices and describe an innovative RF/microwave design, integration technique, process enhancement, and/or combination thereof that results in significant improvements in performance and/or in time to production for RF/microwave components, subsystems, or systems.

The Industry Paper Competition (IPC) recognizes outstanding technical contributions from industry sources. All finalist papers are from the RF/microwave industry and describe innovation of a product or system application that potentially has the highest impact on an RF/microwave product and/or system which will significantly benefit the microwave community and society at large.

ADVANCED PRACTICE PAPER FINALISTS:

Th2F: A 32-Element 28/39 GHz Dual-Band Dual-Beam 5G Phased-Array with 40 dBm EIRP and Simultaneous 64 QAM Operation

Authors: Shufan Wang, Univ. of California; San Diego; Gabriel Rebeiz, Univ. of California, San Diego

We2A: Miniaturized 28 GHz Packaged Bandpass Filter with High Selectivity and Wide Stopband Using Multi-Layer PCB Technology

Authors: Yunbo Rao, Univ. of Electronic Science and Technology of China; Huizhen Qian, Univ. of Electronic Science and Technology of China; Jie Zhou, Univ. of Electronic Science and Technology of China; Yuandan Dong, Univ. of Electronic Science and Technology of China; Xun Luo, Univ. of Electronic Science and Technology of China

INDUSTRY PAPER FINALISTS:

We1E: A 50W CW 1-6 GHz GaN MMIC Power Amplifier Module with Greater than 30% Power Added Efficiency Authors: Michael Roberg, OORVO, Inc.: Jason Zhang, OORVO, Inc.: Rob

Authors: Michael Roberg, *QORVO, Inc.*; Jason Zhang, *QORVO, Inc.*; Robert Flynt, *QORVO, Inc.*; Matthew Irvine, *QORVO, Inc.*

Tu4A: A 31-Tap Reconfigurable Analog FIR Filter Using Heterogeneously Integrated Polystrata Delay-Lines

Authors: Eric Wagner, Northrop Grumman Corp.; Tim LaRocca, Northrop Grumman Corp.; Mark Verderber, Nuvotronics; Carlos Rezende, Nuvotronics; Peter May, Nuvotronics

We2C: Deep Learning Enabled Inverse Design of 30-94 GHz Psat-3dB SiGe PA Supporting Concurrent Multi-Band Operation at Multi-Gbps Authors: Zheng Liu, Princeton Univ.; Emir Ali Karahan, Princeton Univ.; Kaushik Sengupta, Princeton Univ.

Th1B: A Reconfigurable SAW Resonator Using Monolithically Integrated Switches

Authors: Arash Fouladi Azarnaminy, *Univ. of Waterloo*; Aminat Oyiza Suleiman, *Institut National de la Recherche Scientifique*; Mohamed Chaker, *Institut National de la Recherche Scientifique*; Raafat Mansour, *Univ. of Waterloo*

IMS2022 Mini Golf Classic

Enjoy 9 holes of mini golf as you explore the IMS Show Floor. Show off your putting skills during show hours Tuesday, 21 June – Thursday, 23 June! After you complete each hole, your golf card will be stamped.

Turn your fully stamped card into the XMA Booth, 4008 to enter to win one of the following fabulous prizes:

- 1st Prize—Apple 10.2-inch iPad and Apple AirPods Pro
- 2nd Prize—Beats Noise Cancelling Headphones and mophie 4-in-1 Universal Charging Mat
- 3rd Prize—Echo Show 8 and Sonos Roam

Sponsored By:

Special Thanks for Your Sponsorship

Aerospace and Defense Technology AmpliTech Inc. Analog Devices Inc. Anokiwave Anritsu Company APITech Cadence Design Systems Inc. Copper Mountain Technologies Eravant everything RF evissaP Inc. GLOBALFOUNDRIES High Frequency Electronics LPKF Laser and Electronics Booth 11081 Booth 3036 Booth 3050 Booth 11022 Booth 9038 Booth 11080 Booth 5050 Booth 5050 Booth 9007 Booth 6016 Booth 7013 Booth 7042 Booth 8005 Booth 10050 MACOM Maury Microwave Microwave Journal Microwaves & RF Millimeter Wave Products Inc. Pasternack Qorvo Quantic Electronics RF Globalnet Rohde & Schwarz USA Inc. WIN Semiconductors Corp. Wolfspeed Inc. XMA Corporation

Booth 6050 Booth 8050 Booth 8018 Booth 3042 Booth 1050 Booth 9014 Booth 3030 Booth 8076-9081 Booth 1044 Booth 7056 Booth 6080 Booth 2060 Booth 4008

Sponsor List as of 18 May 2022

401-402

Semiconductor Materials

Chair: Chung-Tse Michael Wu,

Th1A-1: Effect of Treatment for

Univ. of Houston; J. Chen, Univ. of

Impact on Biological Cells

D. Dubuc, LAAS-CNRS; K. Grenier,

Th1A-3: Measuring Yeast Cell

R. Divan, Argonne National Lab;

Heating During 1.5T MRI

Rutgers Univ.

Houston

LAAS-CNRS

Cvtometer

Clemson Univ.

08:00

08:20

8 6

5

Microwave Field, Device & Circuit Techniques

08:00 - 09:40 Thursday, 23 June 2022 Colorado Convention Center Systems & Applications Emerging Technologies & Applications **Passive Components** Active Components Focus & Special Sessions 403-404 501-502 1A - 1C Th1A: Microwave Interaction and Th1B: Advances in SAW and Th1C: Microwave and Terahertz Th1E: Compound Semiconductor Characterization of Biological and Acoustic Components Technology Photonics **Power Amplifiers** Chair: Pierre Blondy, XLIM (UMR 7252) Chair: Mona Jarrahi, Univ. of California, Chair: Charles F. Campbell, Qorvo Los Angeles Co-Chair: Songbin Gong, Univ. of Illinois Co-Chair: Zova Popović, Univ. of Co-Chair: David Harame, SUNY at Urbana-Champaign Colorado Boulder Co-Chair: Malgorzata Celuch, QWED Polvtechnic Institute Th1B-1: A Reconfigurable SAW Th1E-1: A DC-170GHz InP Distributed Th1C-1: Terahertz Generation from Abandoned DBS Leads on RF-Induced **Resonator Using Monolithically** Amplifier Using Transmission Line Loss a Bias-Free, Telecommunication-**Compatible Photoconductive Emitter Integrated Switches Compensation Technique Realized on a Silicon Substrate** R. Guo, Univ. of Houston; W. Hu, Univ. of P.T. Nguyen, Univ. of California, Davis; A. Fouladi Azarnaminy, Univ. of Waterloo; N.L.K. Nguyen, Univ. of California, Davis; A.O. Suleiman, INRS-EMT; M. Chaker, P.-K. Lu, Univ. of California, Los Angeles; Houston; J. Zheng, Univ. of Houston; A.N. Stameroff, Keysight Technologies; C.J. Ballard, Univ. of Houston; D. Herrera, INRS-EMT; R.R. Mansour, Univ. of Y. Zhao, Univ. of California, Los Angeles; Waterloo D. Turan, Univ. of California, Los Angeles; A.-V. Pham, Univ. of California, Davis X. Jiang, Univ. of California, Los Angeles; M. Jarrahi, Univ. of California, Los Angeles Th1C-2: 860µW Terahertz Power Th1A-2: Dosimetry Performances of a Th1B-2: Acoustic Delay Lines in Th1E-2: A Ku/K/Ka-Band GaAs MMIC Thin-Film Lithium Niobate on Silicon Load-Modulated Amplifier with a MultiWell-Plate-Based Near-Field RF **Generation from Graded Composition** Applicator for the Investigation of EM Carbide InGaAs Photoconductive Nanoantennas **Negative Group Delay Output Network** N. Mullins, Univ. of Colorado Boulder; S. Cho, Univ. of Texas at Austin; Y. Wang, P.-K. Lu, Univ. of California, Los Angeles; A. Moscatiello, LAAS-CNRS; B. Cerdan, Univ. of Texas at Austin; J. Kramer, Univ. of D. Turan, Univ. of California, Los Angeles; Y. Vega, L3Harris; T. Sonnenberg, Univ. LAAS-CNRS; C. Gironde, Anti Oxidant Texas at Austin; K. Nguyen, Univ. of Texas M. Jarrahi, Univ. of California, Los Angeles of Colorado Boulder; Z. Popovic, Univ. of Power; C. Furger, Anti Oxidant Power; at Austin; R. Lu, Univ. of Texas at Austin Colorado Boulder Th1B-3: SAW Duplexer with High Th1C-3: Fiber-Optic THz Wireless Uplink Th1E-3: 2.8-3.8GHz Broadband InGaP/ Heterogeneity with a Microwave Flow **Isolation Based on Rejection Resonator** with Remote Down-Conversion by **GaAs HBT Doherty Power Amplifier IC** and Cross Coupled Capacitor **Optical Carriers Transmitted from** for 5G New Radio Handset **Central Office** N. Dahal, Clemson Univ.; J. Osterberg, Clemson Univ.; T. Caldwell, Clemson Univ.; H. Xue, UESTC; Y. Dong, UESTC H. Oh, W. Choi, H. Koo, J. Shin, Y. Chen, S. Cho. POSTECH: S.-R. Moon. ETRI: H. Jeon, Y. Choi, H. Jung, J. Hwang, M. Sung, ETRI; S.-H. Cho, ETRI; H.-J. Song, Y. Yang, Sungkyunkwan Univ. S. Harcum, Clemson Univ.; P. Wang, POSTECH Th1B-4: Silicon-SAW Resonators and Th1C-4: Photonic-Enabled Real-Time Th1E-4: Broadband 100-W Ka-Band **Delay Lines Based on Sub-Micron** Spectrogram Analysis of Sub-SSPA Based on GaN Power Amplifiers Lithium Niobate and Amorphous Silicon Nanosecond Microwave Events Over a Philipp Neininger, Laurenz John, Martin 40GHz Instantaneous Bandwidth Y. Yang, HKUST; L. Gao, Univ. of Illinois at Zink, Dirk Meder, Michael Kuri, Axel C.M.L. Rowe, INRS-EMT; B. Crockett, Urbana-Champaign; S. Gong, Univ. of Tessmann, Christian Friesicke, Fraunhofer Illinois at Urbana-Champaign INRS-EMT; J. Azaña, INRS-EMT Institute for Applied Solid State Physics; Michael Mikulla, Rüdiger Quay,

09 ë Th1A-4: Sensing of Muscular Mouse Cells C2C12 from Seed Out to **Electroporation – A Conceptional Study**

M. Paravicini, Technische Univ. Darmstadt; M. Milden, Technische Univ. Darmstadt; D. Birnstengel, Technische 3 Univ. Darmstadt; M. Schüßler, Technische

Univ. Darmstadt; R. Jakoby, Technische Univ. Darmstadt; M.C. Cardoso, Technische Univ. Darmstadt; C. Hessinger, Technische Univ. Darmstadt

09:20 Th1A-5: Irradiated Silicon for Microwave and Millimeter Wave Applications

Jerzy Krupka, Warsaw Univ. of Technology; Bartlomiej Salski, Warsaw Univ. of Technology; Tomasz Karpisz, Warsaw Univ. of Technology; Pawel Kopyt, Warsaw Univ. of Technology; Leif Jensen,

Topsil GlobalWafers A/S; Marcin Wojciechowski, Central Office of Measures

Th1C-5: A Large Signal Equivalent **Circuit Modeling and Enhanced RF Output Power of PIN Photodiodes**

J. Li, UESTC; F. You, UESTC; M. Ma, UESTC; C. Shen, UESTC; Y. Wang, UESTC; Y. Chen, UESTC; C. He, UESTC; X. Zhang, UESTC; S. He, UESTC

Fraunhofer Institute for Applied Solid State Physics, Thomas Zwick, Karlsruhe Institute of Technology

Th1E-5: A 100W W-Band GaN SSPA

Jason Soric, Raytheon Company; Nicholas Kolias, Raytheon Technologies; Jeffrey Saunders, Raytheon Technologies; Jeffrey Kotce, Raytheon Technologies; Andrew Brown, Raytheon Technologies; Christopher Rodenbeck, U.S. Naval Research Laboratory; Ronald Gyurcsik, Raytheon Technologies

THURSDAY

09:40

Passive Components

Microwave Field, Device & Circuit Techniques

1D-1F 🔥

Characterization and Test of Phased-Array Antenna Systems: Is it Really a Nightmare?*

Chair: Marc Vanden Bossche, National Instruments

Co-Chair: Matt Spexarth, National Instruments

Th1F: Efficient

Th1F-1: Keynote: Calibrating RF/ Microwave Front Ends in Multichannel Receiver and Transmitter Systems

Mike Jones, Analog Devices, Inc.

08:10

08:20

03:30

08:40

08:50

09:00

09:10

09:20

09:30

08:00

Th1F-2: Rydberg Atomic Electrometry:
A Near-Field Technology for Complete
Far-Field Imaging in Seconds?

D. Booth, Quantum Valley Ideas Laboratories; K. Nickerson, Quantum Valley Ideas Laboratories; S. Bohaichuk, Quantum Valley Ideas Laboratories; J. Erskine, Quantum Valley Ideas Laboratories; J.P. Shaffer, Quantum Valley Ideas Laboratories

Th1F-3: A Novel OTA Near-Field Measurement Approach Suitable for 5G mmWave Wideband Modulated Tests

M. Löhning, National Instruments; T. Deckert, National Instruments; V. Kotzsch, National Instruments; M. Vanden Bossche, National Instruments

Th1F-4: Fast Simultaneous Characterization of All Analog Phase

Characterization of All Analog Phased Array Elements

M.D. Foegelle, ETS-Lindgren

Th1F-5: Preliminary System Integration and Performance Features for an S-Band, Dual-Polarized, All-Digital Phased Array Radar

C. Fulton, Univ. of Oklahoma; N. Goodman, Univ. of Oklahoma; M. Yeary, Univ. of Oklahoma; R. Palmer, Univ. of Oklahoma; H.H. Sigmarsson, Univ. of Oklahoma; J. McDaniel, Univ. of Oklahoma

* Co-Sponsored by ARFTG

09:40

Systems Pavilion Participants

Thursday, 23 June 2022

Systems & Applications Emerging Technologies & Applications

08:00 - 09:40

Active Components

Tektronix

10:30

10:40

10:50

8

11:20

11:30

11:50

10:10 -11:50 Thursday, 23 June 2022 Colorado Convention Center Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 401-402 403-404 501-502 1A - 1C Th2A: Measurement and Th2B: Recent Advances in Th2C: Nano-Devices and their High Th2E: Recent Advances in Instrumentation Techniques for **Acoustic Resonators and Filters** Frequency Applications Microwave Semiconductor **Evolving Standards in Future Technology Dedicated to Dick** Chair: Amelie Hagelauer, Technische Chair: Luca Pierantoni, Università **Technologies* Sparks** Universität München Politecnica delle Marche Chair: Tony G. Ivanov, U.S. Army Co-Chair: Brice Ivira, Broadcom Co-Chair: Davide Mencarelli, Università Chair: Jon Martens, Anritsu Politecnica delle Marche Research Laboratory Co-Chair: Gian Piero Gibiino, Università Co-Chair: Julio Costa, Oorvo di Bologna Th2A-1: 3D Chip-Level Broadband Th2B-1: 33 GHz Overmoded Bulk Th2C-1: 28nm Neck Width Graphene Th2E-1: Time Dependence of RF Losses **Geometric Diode for THz Harvesting Measurement Technique for Radiated** Acoustic Resonator in GaN-on-Si Substrates EM Emission Zachary Schaffer, Carnegie Mellon Univ.; H. Wang, KAUST; A. Shamim, KAUST Pieter Cardinael, Université Catholique Y.-C. Chang, NARLabs-TSRI; J. Wang, Pietro Simeoni, Carnegie Mellon Univ.; de Louvain; Sachin Yadav, IMEC; National Tsing Hua Univ.; T.-Y. Lin, Ming Zhao, IMEC; Martin Rack, Université Gianluca Piazza, Carnegie Mellon Univ. NARLabs-TSRI; C.-P. Hsieh, NARLabs-Catholique de Louvain; Dimitri Lederer, TSRI; Y. Huang, Univ. of Liverpool; Université Catholique de Louvain; Nadine S.S.H. Hsu, National Tsing Hua Univ.; Collaert, IMEC; Bertrand Parvais, IMEC; D.-C. Chang, NARLabs-TSRI Jean-Pierre Raskin, Université Catholique de Louvain Th2A-2: Linearity Metrics and Signal Th2B-2: Miniaturized Ultrawide Th2C-2: Self-Consistent and Full-Wave Th2E-2: Channel Thickness Impact on Statistics - The Need for Standards **Bandwidth WiFi 6E Diplexer** the Small- and Large-Signal RF **Analysis of Carbon-Nanotube Matrices** Implementation Using XBAW RF Filter for Multi-Channel Charge Confinement Performance of GaN HEMTs on Si with a R. Figueiredo, Universidade de Aveiro; Technology cGaN Back-Barrier N. Carvalho, Universidade de Aveiro D. Mencarelli, Università Politecnica delle R. ElKashlan, *IMEC*; A. Khaled, *IMEC*; R. Rodriguez, *IMEC*; S. Yadav, *IMEC*; U. Peralagu, *IMEC*; A. Alian, *IMEC*; N. Collaert, *IMEC*; P. Wambacq, *IMEC*; S. Gupta, Akoustis; E. Mehdizadeh, Marche; G.M. Zampa, Università Akoustis; K. Cheema, Akoustis; Politecnica delle Marche; C.H. Joseph, J.B. Shealy, Akoustis Università Politecnica delle Marche; L. Pierantoni, Università Politecnica delle B. Parvais, IMEC Marche Th2A-3: A 110 GHz Comb Generator Th2B-3: Neural Network-Aided Spurious Th2C-3: Towards 500GHz Non-Volatile Th2E-3: On the Influence of Transistor in a 250 nm InP HBT Technology Modes Optimization Targeting Lithium **Monolayer 6G Switches Dimensions on the Dispersive Behavior Niobate MEMS Resonators** in AIGaN/GaN HEMT-Based PAs and Jerome Cheron, Dylan Williams, M. Kim, UNIST; G. Docournau, IEMN (UMR Robust LNAs Richard Chamberlin, National Institute 8520); S. Skrzypczak, IEMN (UMR 8520); L. Colombo, Northeastern Univ.; P. Szriftgiser, PhLAM (UMR 8523); of Standards and Technology; Miguel L. Baldesi, Northeastern Univ.: T. Melodia, S. Krause. FBH: C. Zervos. Technion: Urteaga, Teledyne Scientific; Paul Hale, Northeastern Univ.; M. Rinaldi, S.J. Yang, Univ. of Texas at Austin; N. P. Beleniotis, Brandenburgische Rob Jones, Ari Feldman, National Wainstein, Technion; K. Stern, Technion; Northeastern Univ. Technische Universität; D. Ritter, Institute of Standards and Technology H. Happy, IEMN (UMR 8520); E. Yalon, Technion: M. Rudolph. Brandenburgische Technion; E. Pallecchi, IEMN (UMR 8520); Technische Universität; W. Heinrich, FBH D. Akinwande, Univ. of Texas at Austin Th2A-4: Silicon Micromachined Th2B-4: Wideband Hybrid Acoustic-Th2C-4: Inverted Scanning Microwave Th2E-4: Diamond Schottky p-i-n Diodes: Metrology Components for 0.5–1.1THz **Electromagnetic Filters with Prescribed** Microscopy of a Vital Mitochondrion in **DC**, Small-Signal and Large-Signal **Behavior for RF Applications Chebyshev Functions** Liquid J. Campion, TeraSi; B. Beuerle, TeraSi G. Ariturk, Univ. of Oklahoma; V. Jha, Arizona State Univ.; H. Surdi, Afifa Azman, Gianluca Fabi, Eleonora Arizona State Univ.; F. Koeck, Arizona N.R. Almuqati, Univ. of Oklahoma; Y. Yu, Pavoni, Christopher Joseph, Univ. Texas Instruments; E.T.-T. Yen, Texas Politecnica delle Marche; Niccolo Pini, State Univ.; R.J. Nemanich, Arizona State Instruments; A. Fruehling, Texas Tiziana Pietrangelo, Università "G. Univ.; S.M. Goodnick, Arizona State Univ.; Instruments; H.H. Sigmarsson, Univ. of D'Annunzio"; Luca Pierantoni, Antonio T.J. Thornton, Arizona State Univ. Morini, Davide Mencarelli, Andrea Di Oklahoma Donato, Univ. Politecnica delle Marche; James Hwang, Cornell Univ.; Marco Farina, Univ. Politecnica delle Marche Th2B-5: S-Band High Passive Gain Th2C-5: Integrated CNT Aerogel Th2A-5: WG29/WR7 Band Th2E-5: Long-Term Large-Signal RF **Thermoelectric Power Sensor Reliability Characterization of SiGe Resonant Transformers Based on** Absorbers for Sub-THz Waveguide **Aluminum Nitride FBAR Resonators Characterization Using** Systems **HBTs Using a Passive Impedance Tuner** System **Microcalorimetry Technique** Y.-M. Huang, National Tsing Hua Univ.; P.A. Drózdz, Polish Academy of Sciences; C. Weimer, Technische Universität M. Celep, NPL; G.N. Phung, PTB; F. Ziadé, C.-Y. Chang, National Tsing Hua Univ.; J. Campion, KTH; N. Xenidis, KTH; T.-H. Hsu, National Tsing Hua Univ.; Y. Ho, LNE; D. Stokes, NPL; J. Rühaak, PTB; A. Krajewska, Polish Academy of Dresden; E. Vardarli, Technische Universität Dresden; G.G. Fischer, IHP; K. Kuhlmann, PTB; D. Allal, LNE VIS; Y.-H. Chen, VIS; Y.R. Pradeep, VIS; Sciences; A. Przewloka, Polish Academy R. Chand, VIS; S.-S. Li, National Tsing Hua of Sciences; S. Smirnov, KTH; M. Haras, M. Schröter, Technische Universität Univ.; W. Fang, National Tsing Hua Univ.; Polish Academy of Sciences; Dresden M.-H. Li, National Tsing Hua Univ. A. Nasibulin, Aalto Univ.; D.V. Lioubtchenko, Polish Academy of Sciences

58

THURSDAY

Passive Components

10:10

10:20

10:30

10:40

10:50

ë

11:10

1:20

11:3

1:40

Th2F-6: A 1024-Element Ku-Band SATCOM Phased-Array Transmitter with

39.2dBW EIRP and ±53° Beam Scanning

Y.-H. Wang, Rapidtek; J.-H. Chou, Rapidtek; W.-J. Lin, Rapidtek

There's Still Time to visit the IMS Show Floor before it closes at 15:00!

Thursday, 23 June 2022

Systems & Applications Emerging Technologies & Applications

Colorado Convention Center

Focus & Special Sessions

10:10 -11:50

Active Components

eed charge

Stop by one of the networking lounges (Booths 3110, 4058 and 11068) on the IMS Show Floor, catch up with colleagues, and charge your device.

Sponsored By:

MIC	ROAPPS	5	09:30 - 13:30	Thursday, 23 June 2022	IMS Show Floor: Booth 9110
SESSION CODE	TIME	TITLE			SPEAKER/S, AFFILIATION
THMA61	09:30 - 09:45	Highly Accurate RF S	System Modeling		Chris DeMartino, Modelithics
THMA62	09:45 - 10:00	High-Performance o	r Low-Cost Signal Generatior	n: Why Accept That Trade-Off?	Bob Buxton, Boonton
THMA63	10:00 - 10:15	High-Rate Sample C	locks for Wideband RF Syste	ms	Raymond Baker, Richardson RFPD
THMA64	10:15 - 10:30	Improve Speed for M	lodulated Test in Characteriz	ation and Production	Markus Loerner, Rohde & Schwarz USA, Inc.
THMA65	10:30 - 10:45		nance for Base Transceiver S Power Handling, Ultra-Low I	Joe Simanis, Nisshinbo Micro Devices	
THMA66	10:45 - 11:00	Need sub-10fs RMS	Need sub-10fs RMS Jitter Signal Generation: Translation Loops		Unal Kudret, Analog Devices, Inc.
THMA67	11:00 - 11:15	The Technical Challenges of Employing GaN and How to Overcome Them		Tudor Williams, Filtronic	
THMA68	11:15 - 11:30	Using Commercial Instruments to Record and Playback Interference Signals		Alejandro Buritica, Andrew Cobas, <i>Tektronix</i>	
THMA69	11:30 - 11:45	Performance of Mar	ki Microwave Components in	Quantum Information Systems	Harley Berman, Marki Microwave
THMA70	11:45 - 12:00	Strategies for Enabli down to milli-Kelvin	ng Quantum Development w	ith Test and Measurement from 77K	Jack DeGrave, FormFactor
THMA71	12:00 - 12:15		Itering Solutions Enhances D erization Measurements	Dynamic Range and Flexibility of	Rafi Hershtig, K&L Microwave
THMA72	12:15 - 12:30	WIPL-D Domain Dec	omposition Solver: 12 Million	n Unknowns — One Server — One Day	Miodrag Tasic, <i>Univ. of Belgrade,</i> Branko Kolundzija, <i>WIPL-D</i>
THMA73	13:00 - 13:30	Drawing for winners	of IMS2022 Mini Golf Classio	c!	

Sponsored By:

ROHDE&SCHWARZ

Coffee Breaks Sponsored By:

HIGH FREQUENCY

- ELECTRONICS

5G TESTING – ARE YOU READY?

5G will change the way we communicate. 5G NR is the first communications standard designed to support a wide variety of consumer and industry applications. 3GPP release 15 laid the foundation for 5G NR by introducing new, flexible numerology, advanced channel coding and modulation schemes. Enabling wider channel bandwidths and extended carrier aggregation schemes while also extending frequencies into the millimeter wave range make more radio resources available. In this book, five Rohde & Schwarz experts for wireless communications technologies give insights into 5G NR.

Claim your 5G NR hardcover book at booth #7056

Make ideas real

ROHDE&SCHWARZ

IMS TECHNICAL SESSIONS Microwave Field, Device & Circuit Techniques

13:30 -15:10 Thursday, 23 June 2022

Colorado Convention Center

	401-402	403-404	501-502	1A - 1C
	Th3A: MHz-to-THz Instrumentation for Biological Measurements and Healthcare Applications	Th3B: Emerging Phase-Change and SIW Technologies for mm-Wave to Sub-THz Applications	Th3C: Silicon Based Digital Power Amplifier Architectures	Th3E: Reconfigurable RF Systems for 5G mm-Wave Communications
	Chair: Olga Boric-Lubecke, Univ. of Hawaii at Manoa Co-Chair: Tomislav Markovic, Univ. of Zagreb	Chair: John Ebel, AFRL Co-Chair: Tejinder Singh, Dell Technologies	Chair: Mark P. van der Heijden, <i>NXP</i> Semiconductors Co-Chair: Sushil Kumar, <i>Marki Microwav</i> e	Chair: Holger Maune, OvG Universität Magdeburg Co-Chair: Nathan Orloff, <i>NIST</i>
13:30	Th3A-1: A 0.43g Wireless Battery-less Neural Recorder with On-chip Microelectrode Array and Integrated Flexible Antenna	Th3B-1: A W-Band Photoconductive Evanescent-Mode Waveguide Switch T.R. Jones, <i>Univ. of Alberta</i> ; A. Fisher,	Th3C-1: A Large Dynamic Range Reconfigurable Interpolation Digital Transmitter for NB-IoT Applications	Th3E-1: Slow-Wave MEMS Phase Shifter with Liquid Crystal for Reconfigurable 5G
13:40 1	Hengying Shan, Purdue Univ.; John Peterson III, Purdue Univ.; Nathan Conrad, Purdue Univ.; Yu Tang, Purdue Univ.; Yuhang Zhu, Purdue Univ.; Shabnam Ghotbi, Purdue Univ.; Sutton Hathorn, Purdue Univ.; Alexander Chubykin, Purdue Univ.; Saeed Mohammadi, Purdue Univ.	Purdue Univ.; D.W. Barlage, Univ. of Alberta; D. Peroulis, Purdue Univ.	Nagarajan Mahalingam, Hang Liu, Yisheng Wang, Kiat Seng Yeo, Singapore Univ. of Technology and Design; Chien-I Chou, Hung-Yu Tsai, Kun-Hsun Liao, Wen-Shan Wang, Ka-Un Chan, Ying-Hsi Lin, Realtek Semiconductor Corp.	L. Gomes, Universidade de São Paulo; D. Wang, Technische Univ. Darmstadt; G. Palomino, J. Lé, Universidade de São Paulo; R. Jakoby, Technische Univ. Darmstadt; H. Maune, OvG Universität Magdeburg; P. Ferrari, RFIC-Lab (EA 7520); A.L.C. Serrano, G.P. Rehder, Universidade de São Paulo
13:50	Th3A-2: UHF-Dielectrophoresis Signatures as a Relevant Discriminant Electromagnetic Biomarker of	Th3B-2: Off-State Stability of Phase-Change Material RF-Switches	Th3C-2: A Wideband Two-Way Digital Doherty Transmitter in 40nm CMOS	Th3E-2: A 18–50GHz Two-Phase Mixer-First Receiver Front-End in 45-nm SOI
14:00	Colorectal Cancer Stem Cells E. Lambert, XLIM (UMR 7252); E. Barthout, CAPTuR (EA 3842); R. Manczak, XLIM (UMR 7252); S. Sadaa, B. Bessette, M. Mathonnet, F. Lalloué, CAPTuR (EA 3842); C. Dalmay, A. Pothier, XLIM (UMR 7252)	N. Le Gall, XLIM (UMR 7252); I. Bettoumi, XLIM (UMR 7252); C. Hallepee, XLIM (UMR 7252); P. Blondy, XLIM (UMR 7252)	M. Beikmirza, Technische Universiteit Delft; Y. Shen, Technische Universiteit Delft; L.C.N. de Vreede, Technische Universiteit Delft; M.S. Alavi, Technische Universiteit Delft	A.A. Nawaz, Michigan State Univ.; SC. Hung, Michigan State Univ.; M. Hodek, Michigan State Univ.; J.D. Albrecht, Michigan State Univ.; A.Ç. Ulusoy, Michigan State Univ.
14:10				
0	Th3A-3: Contactless Measurement of Human Systolic Time Intervals based on Differential Doppler Cardiogram in	Th3B-3: Chalcogenide GeTe-Based Non-Volatile Switched K-Band Tunable Reflective Load for Reconfigurable RF	Th3C-3: A 39W Fully Digital Wideband Inverted Doherty Transmitter R. Bootsman, Technische Universiteit	Th3E-3: Reconfigurable Millimeter- Wave Power Amplifiers in GaN and SOI Using Passive Load Modulation
14:20	Clinical Environment Shuqin Dong, Shanghai Jiao Tong Univ.; Li Wen, Shanghai Jiao Tong Univ.; Zhi Zhang, Shanghai General Hospital; Changzhan Gu, Shanghai Jiao Tong Univ.; Junfa Mao, Shanghai Jiao Tong Univ.	Circuits T. Singh, <i>Univ. of Waterloo</i> ; R.R. Mansour, <i>Univ. of Waterloo</i>	Delft; Y. Shen, Technische Universiteit Delft; D. Mul, Technische Universiteit Delft; M. Rousstia, Ampleon; R. Heeres, Ampleon; F. van Rijs, Ampleon; J. Gajadharsing, Ampleon; M.S. Alavi, Technische Universiteit Delft; L.C.N. de Vreede, Technische Universiteit Delft	R.R. Karnaty, Univ. of California, Santa Barbara; SM. Chang, Univ. of California, Santa Barbara; J.F. Buckwalter, Univ. of California, Santa Barbara
14:30	Th3A-4: Multi-Target Concurrent Vital Sign and Location Detection Using Super-Regenerative Oscillator-Based Metamaterial Pulsed Radar	Th3B-4: AFSIW Y-Junction Circulator for High-Power Handling New Space Applications		Th3E-4: Dynamically Reconfigurable Metasurface Antennas for Mobile Connectivity in 5G Non-Terrestrial Networks
14:40	Y. Yuan, Rutgers Univ.; CT.M. Wu, Rutgers Univ.	Maran, Cobran Microwave, A. Ghiotto, IMS (UMR 5218); A. Verger, Cobham Microwave; JM. Pham, IMS (UMR 5218)		A. Bautista, <i>Kymeta</i> ; R. Stevenson, <i>Kymeta</i> ; M. Sazegar, <i>Kymeta</i> ; T. Schlichter, <i>Fraunhofer IIS</i> ; T. Heyn, <i>Fraunhofer IIS</i>
14:50	Th3A-5: Multi-Subject Heart Rate Estimation and Real-Time Tracking Using a mmWave Radar and Trace Carving Algorithm			Th3E-5: A Configurable Architecture for Efficient Sparse FIR Computation in Real-Time Radio Frequency Systems
15:00	CJ. Bauder, Univ. of Tennessee; AK. Moadi, Univ. of Tennessee; M. Joshi, Univ. of Tennessee; A.E. Fathy, Univ. of Tennessee			J. Seo, Georgia Tech; M. Mukherjee, Georgia Tech; N. Mizanur Rahman, Georgia Tech; J. Tong, Georgia Tech; C. DeLude, Georgia Tech; T. Krishna, Georgia Tech; J. Romberg, Georgia Tech; S. Mukhopadhyay, Georgia Tech
15:10				

THURSDAY

Passive Components

13:30 - 15:10 Active Components Systems & Applications

Thursday, 23 June 2022

Emerging Technologies & Applications

Colorado Convention Center

Focus & Special Sessions

Th3F: Advances in Integrated Transceivers for Beamforming and RADAR Applications

Chair: Jonathan P. Comeau, Anokiwave Co-Chair: Najme Ebrahimi, Univ. of Florida

Th3F-1: A 28GHz Butler Matrix Based Switched Beam-Forming Network with Phase Inverting Switch for Dual-Port Excitation in 28nm CMOS

Y. Lee, Yonsei Univ.; B. Suh, Samsung; B.-W. Min, Yonsei Univ.

Th3F-2: A 1.9dB NF K-Band Temperature-Healing Phased-Array

Receiver Employing Hybrid Packaged 65nm CMOS Beamformer and 0.1µm **GaAs LNAs**

Dixian Zhao, Peng Gu, Jiajun Zhang, Yongran Yi, Mengru Yang, Chenyu Xu, Southeast Univ.; Yuan Chai, Huiqi Liu, Pingyang He, Na Peng, Chengdu Xphased Technology Company Ltd.; Liangliang Liu, Viangui Yuo, Durglo Muutaia Xiangxi Yan, Purple Mountain Laboratories; Xiaohu You, Southeast Univ.

Th3F-3: A Fully-Integrated CMOS System-on-Chip Ku Band Radiometer System for Remote Sensing of Snow and Ice

A. Tang, Univ. of California, Los Angeles; Y. Kim, Stevens Institute of Technology; M.-C.F. Chang, Jet Propulsion Lab

Th3F-4: A 94GHz FMCW Radar Transceiver with 17dBm Output Power and 6.25dB NF in 65nm CMOS

Z. Song, UESTC; Y. Yu, UESTC; C. Zhao, UESTC; X. Zhang, UESTC; J. Zhu, UESTC; J. Guo, UESTC; H. Liu, UESTC; Y. Wu, UESTC; K. Kang, UESTC

99TH ARFTG MICROWAVE MEASUREMENT CONFERENCE **NVNA** USERS' FORUM

Thursday, 23 June 2022

15:30 - 16:45

Hyatt Regency Denver

ORGANIZER: Patrick Roblin

ON-WAFER USERS' FORUM

Thursday, 23 June 2022

16:45 - 18:00

Hyatt Regency Denver

ORGANIZER: Andrej Rumiantsev

14:50 15:00

15:10

14:10

14:20

14:30

14:40

PANEL SESSION

12:10 - 13:20

Thursday, 23 June 2022

Wearables – Our Life Depends on Them!

PANEL ORGANIZERS:

Ke Wu, Ecole Polytechnique in Montreal; J.-C. Chiao, Southern Methodist Univ.

PANELISTS:

Manos Tentzeris, Georgia Tech; Yang Hao, Queen Mary Univ. of London; Patrick Mercier, Univ. of California, San Diego; Ilja Ocket, IMEC Belgium; Colin Drummond, Case School of Engineering School of Medicine

ABSTRACT: Wearables with convenience, comfort, ubiquitousness, and modularity can provide essential or critical functions to keep us healthy and save lives. They involve multidisciplinary efforts, collaborations, and partnerships in sensing, communication, materials, networking, and system integration. Experts from various disciplines from multiple IEEE societies will talk about the current R&D progress, issues, and challenges in this panel.

PANEL SESSION

12:10 - 13:20

Thursday, 23 June 2022 Room: 4D-4F

Modern Phased Arrays and OTA Testing: A Design or a Measurement Challenge?*

* Co-Sponsored by ARFTG

PANEL ORGANIZERS:

Gerardo Orozco, National Instruments; Thomas Williamson, Georgia Tech Research Institute; Jeffrey Jargon, National Institute of Standards and Technology; Jon Martens, Anritsu

PANELISTS:

Matt Little, Ball Aerospace; Sidina Wane, eV-Technologies; Caleb Fulton, Univ. of Oklahoma; Michael Foegelle, ETS-Lindgren; Cesar Lugo, L3Harris; Rob Horansky, National Institute of Standards and Technology

characterization, measurement, and calibration of modern phased arrays. We will discuss various repeatable, practical, and economic methods for addressing challenges presented by emerging technology. We will draw on a breadth of knowledge from academia, the defense and aerospace industry, and the cellular industry to speak to the diversity of array technology for 5G, 6G, satellite-borne arrays, and radar.

ABSTRACT: This panel addresses current and future challenges regarding over the air (OTA)

TECHNICAL LECTURE

13:30 - 15:10 | Thursday, 23 June 2022 | Room: 4A-4C

LECTURE TITLE

Semiconductor Electronics for High Power/High **Speed Reconfigurable RF** and Microwave Electronics Speaker: Robert Caverly, Villanova Univ.

LECTURE ABSTRACT

The microwave and RF design engineer always seeks to develop a design that will meet specifications the first time that the circuit is fabricated. To do so requires that as many elements and phenomenon as possible associated with the control devices and circuit be accurately modeled. In the case of the microwave and RF semiconductor control circuits, accurate modeling of the solid-state control components over frequency, voltage, current and power is key to successful control system design. This talk will cover material that will provide the RF and microwave design engineer insight into the physical operation and modeling of PIN diodes and field-effect transistors (FETs) as control components and their use in microwave and RF control circuits. The talk will cover basic RF and microwave control circuits for reconfigurable electronics, and then focus on linear and nonlinear models for PIN diode, MESFET and MOSFET control elements to implement these circuits. The talk will conclude with control circuit examples using these models for use in reconfigurable RF and microwave electronics.

24

INTERACTIVE FORUM SESSION &

13:30 – 15:30 Thursday, 23 June 2022

Chairs: Akim Babenko, Justus Brevik, Robert Horansky, NIST

THIF3-1: Plenary Poster: Full-Duplex Phased Arrays: Multi-Function Applications and Enabling Technologies

Kenneth Kolodziej, Massachusetts Institute of Technology, Lincoln Laboratory

THIF3-2: A 40Gbps QAM-16 Communication Link Using a 130nm SiGe BiCM0S Process

F. Strömbeck, Y. Yan, Z.S. He, H. Zirath, Chalmers Univ. of Technology

THIF3-3: An Octave Bandwidth Spatial Power Combiner with Supply Voltage Control

L. Marzall, C. Nogales, G. Lasser, Z. Popovic, Univ. of Colorado Boulder THIF3-4: Laser-Based Noncontact Blood Pressure Estimation Using Human Body Displacement Waveforms

Y. Oyamada, T. Koshisaka, Kyoto Univ.; G. Stankaitis, Univ. of Hawaii at Manoa; S.M.M. Islam, Univ. of Dhaka; V.M. Lubecke, O. Boric-Lubecke, Univ. of Hawaii at Manoa; T. Sakamoto, Kyoto Univ.

THIF3-5: Time Domain-Based Reflectometry Measurements for 3D Printed Graded Index Dielectrics

P. Bluem, R.G. Rojas, B. Duncan, D. Beck, MIT Lincoln Laboratory

THIF3-6: Reference Measurements of Error Vector Magnitude

P. Manurkar, Univ. of Colorado Boulder; C.P. Silva, Aerospace; J. Kast, Colorado School of Mines; R.D. Horansky, D.F. Williams, K.A. Remley, NIST THIF3-7: Investigations on Direction of Arrival and Range Estimation with a Switched Beam Antenna Architecture Implementing Space and Frequency Division Multiple Access

A. Cidronali, G. Collodi, S. Maddio, M. Passafiume, G. Pelosi, *Università di Firenze*

THIF3-8: 180GHz Low-Loss Copper Nanowire CPW Interconnects

A. Dave, Y. Zhang, Univ. of Minnesota; N. Mahjabeen, Univ. of Texas at Dallas; A. Harpel, Univ. of Minnesota; R. Henderson, Univ. of Texas at Dallas; B. Stadler, R.R. Franklin, Univ. of Minnesota

THIF3-9: On the Influence of Electrode Thickness in the Spurious Mode Reduction of Lithium Niobate-On-Insulator SH₀ Acoustic Wave Resonators

E. Guerrero, L. Acosta, Univ. Autònoma de Barcelona; C. Caballero, J. Verdú, Univ. Autònoma de Barcelona; A. Guerrero, IMB-CNM; X. Borrisé, ICN2; J. Esteve, IMB-CNM; P. de Paco, Univ. Autònoma de Barcelona THIF3-10: Low-Bias-Complexity Ku-Band GaN MMIC Doherty Power Amplifier

G. Naah, Università di Roma "Tor Vergata"; A. Piacibello, V. Camarchia, Politecnico di Torino; P. Colantonio, R. Giofrè, Università di Roma "Tor Vergata"

THIF3-11: Long-Range Vital Sign Monitoring by Using a W Band Heterogeneously Integrated FMCW Radar Sensor

Y.-S. Huang, X. Yang, L. Zhou, C. Gu, J. Mao, S*JTU*

THIF3-12: Waveguide Iris Sensor with Thermal Modulation for Non-Intrusive Flow Rate Measurements

O. Niksan, A. Shah, M.H. Zarifi, Univ. of British Columbia

INDUSTRY WORKSHOPS

10:10 - 15:10 Th

Thursday, 23 June 2022

SESSION CODE	TIME & Location	TITLE AND ABSTRACT	SPEAKER/S, AFFILIATION
IWTH2	10:10 - 11:50 Room: 205/207	Emerging EMC Requirements for 5G mmWave Device Measurements Achieving electromagnetic compatibility (EMC) for 5G devices is dependent upon the existence of achievable and appropriate regulatory requirements along with meaningful test methods for demonstrating compliance. This workshop will investigate new developments in test methods, focused on meeting the regulatory requirements of the FCC but with global application, with presentations focused on wireless coexistence and radiated emissions test methods. An overview of wireless coexistence measurements and challenges is presented followed by a focus on automo- tive applications. This is followed by an overview of emerging radiated emissions test methods and research on utilizing a reverberation methodology for faster TRP measurements.	Garth D'Abreu, ETS-Lindgren; Jason Coder, NIST; Aurelian Bria, Ericsson; Jari Vikstedt, ETS-Lindgren
IWTH3	13:30 - 15:10 Room: 205/207	Materials Characterization and Assessment for 5G/mmWave Applications The Workshop discusses the iNEMI 5G benchmarking activity of materials' characterization techniques relevant to 5G/mmWave applications. Four measurement methods (SCR, SPDR, BCDR, FPOR) have been identified and tested in a round-robin of 10 sample kits (including Precision Teflon, COP, and fused silica) circulated between 10 laboratories. The experimental results will be presented and the physics of the measurement process will be illustrated with FDTD, FEM, and MoM simulations. The Workshop comprises four 15-minute lectures (5G industry needs; benchmarked methods and EM insight; round-robin results; best practices and recommendations) followed by 45-minute hands-on exercises and 15-minute discussion.	Malgorzata Celuch, <i>QWED Sp. z o.o.;</i> Say Phommakesone, <i>Keysight</i> <i>Technologies;</i> Marzena Olszewska- Placha, <i>QWED Sp. z o.o.;</i> Urmi Ray, <i>iNEMI</i> ; Nate Orloff, Lucas Enright, <i>NIST</i>

RF Globalnet Connects The RF and Microwave World

- TIMELY, INDUSTRY SPECIFIC NEWS
- ORIGINAL EDITORIAL CONTENT
- RELEVANT PRODUCT LISTINGS
- TECHNICAL INSIGHT FROM INDUSTRY EXPERTS

Visit us at www.rfglobalnet.com to sign up for our free email newsletter.

Learning from the Lightning: How Nikola Tesla Formulated a Scheme for Wireless Power in Colorado Springs

IMS KEYNOTE SPEAKER:

Prof. W. Bernard Carlson, Vaughan Professor of Humanities, *Department of Engineering and Society, Univ. of Virginia and TechInnovate, National Univ. of Ireland Galway*

ABSTRACT: Nikola Tesla [1856-1943] is frequently celebrated for inventing a practical AC motor and for contributing to early radio technology through his plans to transmit power wirelessly around the world. This lecture will trace how Tesla developed his wireless technology from 1890 to 1905, with an emphasis on what he learned in 1899 when he operated an experimental station in Colorado Springs. Since his station was located on Colorado's Front Range, Tesla was able to watch thunderstorms as they moved out of the Rockies and across the Great Plains and to study the ground currents generated by lightning strikes. These observations allowed Tesla to confirm his theory of how to transmit energy through the earth's crust but at the same time he failed to challenge or disconfirm this theory, a failure that limited his subsequent efforts to perfect his ambitious plan for wireless power. Nonetheless, while in Colorado Tesla perfected his understanding of how to tune his transmitting and receiving circuits, thus laying the groundwork for future development of radio technology.

BIOGRAPHY: Bernie Carlson is the Joseph L. Vaughan Professor of Humanities and lectures in the TechInnovate program at the National Univ. of Ireland Galway. Bernie studied history and physics as an undergraduate at Holy Cross College, earned his Ph.D. in the history and sociology of science at the Univ. of Pennsylvania, and did his postdoctoral work at the Harvard Business School. He has written widely on invention and innovation as well as on the role of technology in the rise and fall of civilizations. His books include *Innovation as a Social Process: Elihu Thomson and the Rise of General Electric, 1870-1900* (Cambridge Univ. Press, 1991) and *Technology in World History,* 7 volumes (Oxford Univ. Press, 2005). His most recent book, *Tesla: Inventor of the Electrical Age* (Princeton Univ. Press, 2013) has been translated into nine languages. In addition to his books, Bernie has filmed 36 lectures on "Understanding the Inventions that Changed the World" for The Great Courses. He is a regular contributor to Forbes.com, writing on innovation and the modern economy. Bernie has been the recipient of the IEEE History Fellowship and winner of both the SHOT-IEEE History Prize and the Middleton Award in Electrical History. With the IEEE, he has served on the advisory board of Spectrum and chaired the History Committee.

Thank you for joining us for IMS2022!

 Automatic RF Techniques Group
 08:00 - 17:00
 Friday, 24 June 2022
 Centennial Ballroom, Hyatt Regency Denver

99TH ARFTG MICROWAVE MEASUREMENT CONFERENCE

From Fundamental to Cutting-Edge Microwave Measurement Techniques to Support 6G and Beyond				
08:00–08:10 Welcome to the 99th ARFTG Conference — Introduction				
Conference Co-Chairs: Jeffrey Jargon and Marco Spirito TPC Co-Chairs: Andrej Rumiantsev and Marc Vanden Bossche				
08:10-08:50 Keynote: Characterizing Cryogenic Josephson Microwave Sources for Communications and Quantum Information Alirio S. Boaventura (NIST)*				
	Session A: Enabling Wideband Characterization Techniques Session Chair: Patrick Roblin			
A-1 08:50 - 09:10	VNA-Based Testbed for Accurate Linearizability Testing of Power Amplifiers Under Modulated Signals Nizar Messaoudi, Keysight Technologies *; Ahmed Ben Ayed, Univ. of Waterloo; Jean-Pierre Teyssier, Keysight Technologies; Slim Boumaiza, Nil			
A-2 09:10-09:30	Wideband Vector Corrected Measurements on a Modified Vector Network Analyzer, VNA System Christoph Schulze, Ferdinand-Braun-Institut*; Wolfgang Heinrich, Ferdinand-Braun-Institut; Joel Dunsmore, Keysight Technologies; Olof Bengtsson, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik			
	09:30–11:00 BREAK – EXHIBITS AND INTERACTIVE FORUM			
	Session B: mmWave Over-the-Air Characterization Session Chair: Rusty Myers			
B-1 11:00-11:20	Traceable mmWave Modulated-Signal Measurements for OTA Test Joshua M. Kast, <i>Colorado School of Mines*</i> ; Paritosh Manurkar, <i>Univ. of Colorado Boulder</i> ; Kate Remley, <i>NIST</i> ; Rob Horansky, <i>NIST</i> ; Dylan Williams, <i>NIST</i>			
B-2 11:20-11:40	On Coupling-related Distortion Behavior in mm-Wave Phased Arrays Jon Martens, <i>Anritsu</i> *			
B-3 11:40-12:00	D-band Free Space Dielectric Characterization of a Low-Cost Ultradense Microdiamond Composite for Heat Spreading Shu-Ming Chang, UCSB*; Chelsea Swank, UCSD; Andrew Kummel, UCSD; Muhannad Bakir, Georgia Tech; Mark Rodwell, UCSB; James Buckwalter, UCSB			
	12:00-13:30 AWARDS LUNCHEON			
	Session C: Non-Linear, Large-Signal and VNA Techniques Session Chair: Mauro Marchetti			
C-1 13:30-13:50	Local-Oscillator Third-Harmonic Injection for Improved Broadband Mixer Linearity Akim A. Babenko, Anritsu *; Jon Martens, Anritsu			
C-2 13:50-14:10	Surmounting W-band Scalar Load-Pull Limitations Using the ASM-HEMT Model for Millimeter-Wave GaN HEMT Technology Large-Signal Assessment Nicholas C. Miller, Air Force Research Laboratory*; Michael Elliott, SelectTech Services; Ryan Gilbert, KBR; Erdem Arkun, HRL Laboratories; Daniel Denninghoff, HRL Laboratories			
C-3 14:10-14:30	Impact of Broadband Modulation in Active Load-Pull On-Wafer Measurements of GaN HEMTs Alberto Maria Angelotti, Univ. of Bologna*; Gian Gibiino, Univ. di Bologna; Troels Nielsen, Keysight Technologies, Inc.; Alberto Santarelli, Univ. of Bologna; Jan Verspecht, Keysight Technologies, Inc.			
C-4 14:30-14:50	Effective AM/AM and AM/PM Curves Derived from EVM Measurements on Constellations Jacques B. Sombrin, TESA Laboratory*			
	14:50–16:00 BREAK – EXHIBITS AND INTERACTIVE FORUM			

	Session D: On-Wafer Techniques Session Chair: Leonard Hayden
D-1	Parasitic Coupling Effects in Coplanar Short Measurements
16:00-16:20	Gia Ngoc Phung, Physikalische Technische Bundesanstalt*; Uwe Arz, Physikalisch-Technische Bundesanstalt, PTB
D-2	Extending the Open-Short De-embedding Frequency via M1 On-Wafer Calibration Approaches
16:20-16:40	Ciro Esposito, TU Dresden*
D-3 16:40-17:00	Wideband mm-Wave Integrated Passive Tuners for Accurate Characterization of BiCMOS Technologies Marc Margalef-Rovira, <i>IEMN Laboratory</i> *; Caroline Maye, <i>IEMN Laboratory</i> ; Sylvie Lepilliet, <i>IEMN Laboratory</i> ; Daniel Gloria, STMicroelectronics; Guillaume Ducournau, <i>IEMN Laboratory</i> ; Christophe Gaquiere, <i>MC2-Technologies</i>
	Interactive Forum Session Chair: Marc Vanden Bossche
P-1 09:30-15:40	Demonstration of Non-invasive Probing of CMOS Devices with Aluminum Pads at Frequencies up to 500 GHz Ryo Sakamaki, National institute of Advanced Industrial Science and Technology*; Ryoko Kishikawa, National Institute of Advanced Industrial Science and Technology; Seitaro Kon, AIST; Yuya Tojima, AIST; Ichiro Somada, Mitsubishi Electric Company; Shunpei Matsui, Hiroshima Univ.; Gakuto Taoka, Hiroshima Univ.; Takeshi Yoshida, Hiroshima Univ.; Shuhei Amakawa, Hiroshima Univ.; Minoru Fujishima, Hiroshima Univ.
P-2 09:30-15:40	Determination of the Coplanar Waveguide Propagation Constant via Non-contact, On-wafer Measurements in WR1.5 Band Mitch Wallis, <i>NIST</i> *; Charles Little, <i>NIST</i> ; Richard Chamberlin, <i>NIST</i> ; George Burton, <i>NIST</i> ; Nathan Orloff, <i>NIST</i> ; Christian Long, <i>NIST</i> ; Kubilay Sertel, <i>TeraProbes Inc</i>
P-3	A Single-Element CMOS-LRRM VNA Electronic Calibration Technique
09:30-15:40	Jun-Chau Chien, National Taiwan Univ.*; Ali Niknejad, Univ. of California Berkeley
P-4	The w-plane as a Graphical Representation of Sampler Configuration in a Sampled-Network Reflectometer
09:30-15:40	Devon Donahue, <i>Univ. of Colorado Boulder*</i> ; Taylor Barton, <i>Univ. of Colorado Boulder</i>
P-5	Single-Sweep vs. Banded Characterizations of a D-band Ultra-Low-Loss SiC Substrate Integrated Waveguide
09:30-15:40	Lei Li, Cornell Univ.*

Closing Notes – End of 99th ARFTG Conference

Cheers to 70 Afears!

IMS2022 EXHIBITORS

IMS2022 EXHIBITOR LIST AS OF 18 MAY 2022 | For the most up-to-date information, please visit: ims-ieee.org

	10 11 11 20
2pi-Labs GmbH	10096-1
3D Glass Solutions Inc	6057
3G Shielding Specialties	6015
3RWAVE	10058
A-Alpha Waveguide Inc.	9005
ACE-Accurate Circuit Engineering	2006
ACEWAVETECH AdTech Ceramics	7037 5097
Advance Reproductions Corp.	5117
Advanced Assembly	9109
Advanced Circuitry International	2031
Advanced Test Equipment Corp.	12005
Aerospace & Defense Technology	11081
Aethertek Technology	12036
AFT Microwave Inc.	9096
AGC Multi Material America Inc.	7018
Agile Microwave Technology Inc.	7095
Al Technology Inc.	3020
A-INFO Inc.	12043
AJ Tuck Co. Akoustis Inc.	10006 11030
ALMT Corp.	3007
Altum RF	3012
AMCAD Engineering	8050
AMD-Xilinx	11055
American Microwave Corp.	3104
American Standard Circuits Inc.	2038
Amotech Co. Ltd.	6101
Ampleon	8068
AmpliTech Inc.	3036
Analog Devices Inc.	3050
AnaPico Inc.	9072
Anoison Electronics LLC Anokiwave	10069 11022
Anritsu Company	9038
Ansys	8042
Antenum	9119
APITech	11080
Apple Inc.	4116
AR Modular RF	6030
AR RF/Microwave Instrumentation	6030
Artech House	8014
ASI CoaxDepot	7017
Association of Old Crows Astronics Test Systems	3001 9101
AT Wall Company	6013
Auden Techno	8109
Avalon Test Equipment	12017
B&Z Technologies	7041
Barry Industries Inc.	5006
Benchmark Electronics Inc.	11040
Berkeley Nucleonics Corp.	9072
Blueshift	10096-4
Boonton	8019
BSC Filters	6029 5050
Cadence Design Systems Inc. CAES	5050 9098
Cernex/Cernexwave	4020
Charter Engineering Inc.	7016
ChongQing Ceratronics Technology Ltd.	12006
Ciao Wireless Inc.	5030
Cicor Group	3073
Cinch Connectivity Solutions	4041
CML Microcircuits	11005
Coast to Coast Circuits Inc.	9095
Colorado Engineering Inc.	3014
Colorado Microcircuits Inc.	10013
CommAgility Communications & Power Industries	8019 3041
Component Distributors Inc.	6079
Conduant Corporation	7073
Connectronics Inc.	10082
Continental Resources	2070
Copper Mountain Technologies	10036

522 101 the most up-to-date more	<i>iacion, pice</i>
Corning Inc.	5019
Corry Micronics LLC	8078
	3080
Crane Aerospace & Electronics	
Criteria Labs Inc	3011
Crystek Corp.	10067
CTT Inc.	6019
Cubic Nuvotronics	7113
Custom Cable Assemblies Inc.	6094
Custom Microwave Components Inc.	9097
CW Swift & Associates Inc.	6090
CX Thin Films	2040
Dalicap Tech	6104
Dassault Systemes Simulia Corp.	5110
dB Control	5102
Delta Electronics Mfg. Corp.	7068
Denka Corporation	2009
DeWeyl Tool Company	3089
Diamond Antenna & Microwave Corp.	5005
Diramics	7091
Difform Microwave Inc.	7021
	-
Dongwoo Fine-Chem Co. Ltd.	12039
Dow-Key Microwave	6029
dSPACE Inc.	2012
Ducommun LaBarge Technologies	3005
Eclipse MDI	4016
ED2 Corporation	12022
Egide USA	2010
Electro Ceramic Industries	11079
Electro Rent Corp.	11010
Element Six	10073
Elite RF	10079
EM Labs Inc.	7039
EMC Elektronik Ltd.	9093
Empower RF Systems Inc.	9020
EMSS Antennas	3016
ENGIN-IC Inc.	5101
Eravant	9007
ETL Systems Ltd.	2019
ETS-Lindgren	8037
Eureka Aerospace Inc.	10078
European Microwave Association	3097
European Microwave Week	8016
Evans Capacitor Company	9077
Everything RF/Microwaves 101	6016
evissaP Inc	7013
Exodus Advanced Communications	2011
EZ Form Cable, a Trexon Company	10097
F&K Delvotec Inc.	5062
Filtronetics Inc.	2042
Filtronic Broadband	2068
Fine-Line Circuits Limited	2020
Flann Microwave Ltd.	11044
Flexco Microwave Inc.	4005
Focus Microwaves Inc.	5038
FormFactor Inc.	8030
Fortify	2039
Fraunhofer	12037
Geib Refining Corp.	4011
Gel-Pak	10070
General Microwave Corporation	6017
Genmix Technology Co. Ltd	8111
GGB Industries Inc.	6061
Glenair Inc.	4104
Global Communication Semiconductors	10061
GLOBALFOUNDRIES	7042
Guerrilla RF	7102
Harbour Industries LLC	11021
HASCO INC	7005
Hermetic Solutions Group	6010
Herotek Inc.	7089
Hesse Mechatronics	4103
High Frequency Electronics	8005
Hirose Electric USA	3090
Holzworth	8019
HUIZWUIUI	0019

HRL Laboratories LLC Hughes Circuits Inc. HYPERLABS iCana Ltd. IEEE Future Directions: LEO Sats Project IHP GmbH Impulse Technologies Inc. IMS Connector Systems IMST GmbH Incize Sprl	2044 2015 8013
HYPERLABS iCana Ltd. IEEE Future Directions: LEO Sats Project IHP GmbH Impulse Technologies Inc. IMS Connector Systems IMST GmbH	8013
iCana Ltd. IEEE Future Directions: LEO Sats Project IHP GmbH Impulse Technologies Inc. IMS Connector Systems IMST GmbH	
IEEE Future Directions: LEO Sats Project IHP GmbH Impulse Technologies Inc. IMS Connector Systems IMST GmbH	
IHP GmbH Impulse Technologies Inc. IMS Connector Systems IMST GmbH	7115
Impulse Technologies Inc. IMS Connector Systems IMST GmbH	10096-2
IMS Connector Systems IMST GmbH	6038 5116
IMST GmbH	3092
	2041
	7116
InCompliance Magazine	2037
Indium Corp.	9012
Innertron Inc.	3019
Innovative Power Products Inc.	4110
InPack	10090
In-Phase Technologies Inc.	8010
INRCORE	3058
Inspower Co. Ltd.	10072
Integra Technologies Inc.	8007
Intelliconnect LLC	3010
International Manufacturing Services Inc.	6018
inTEST Thermal Solutions	2043
Ironwood Electronics	3081
Isola/Insulectro	5090
ITF Co. Ltd. IVWorks Co. Ltd.	11043 3077
IW Microwave Products	5015
JFW Industries Inc.	6006
JMA Wireless	4114
Johanson Technology Inc.	4021
JQL Technologies Corporation	5018
Junkosha Inc.	10017
K&L Microwave	6029
Keysight Technologies	7030
Knowles Precision Devices	4079
KOSTECSYS Co. Ltd.	11016
KREEMO Inc.	9091
KRYTAR	7072
KVG Quartz Crystal Technology GmbH	11049
Kyocera AVX	7059
Kyocera International Inc.	6020
LadyBug Technologies LLC	2029
Lake Shore Cryotronics Inc.	7038
Laser Processing Technology Inc. Leader Tech Inc.	8017 9010
Leader lech life.	8100
Liberty Test Equipment Inc.	7019
Linear Photonics	4077
	4077
Linearizer Technology Inc.	3015
	8118
Linearizer Technology Inc. Linwave Technology Ltd. LISAT	0110
Linwave Technology Ltd. LISAT	3039
Linwave Technology Ltd. LISAT Logus Microwave	
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB	3039
Linwave Technology Ltd.	3039 4099
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics	3039 4099 10050
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt	3039 4099 10050 8094
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc.	3039 4099 10050 8094 8090
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM	3039 4099 10050 8094 8090 6050 5042 12016
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks	3039 4099 10050 8094 8090 6050 5042 12016 9117
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marki Microwave Inc. MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc.	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks MathWorks May Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc.	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks MathWorks May Microwave Maxentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Circuit Inc.	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Circuit Inc. MegaPhase	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Circuit Inc. MegaPhase Menlo Microsystems Inc.	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008 7110
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Circuit Inc. MegaPhase Menlo Microsystems Inc. Mercury Systems	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008 7110 5096
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Phase Menlo Microsystems Inc. Mercury Systems Metamagnetics Inc.	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 11036 10042 9008 7110 5096 4007
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marki Microwave Inc. Marki Microwave Inc. Marki Microwave Inc. Marki Microwave Maxentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Phase Menlo Microsystems Inc. Mercury Systems Metamagnetics Inc. Mician GmbH	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008 7110 5096 4007 9068
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions MathWorks Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. MECA Electronics Inc. Mega Circuit Inc. MegaPhase Menlo Microsystems Inc. Mercury Systems Metamagnetics Inc.	3039 4099 10050 8094 8090 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008 7110 5096 4007 9068 10020
Linwave Technology Ltd. LISAT Logus Microwave Low Noise Factory AB LPKF Laser & Electronics Lucas Milhaupt M2 Global MACOM Marki Microwave Inc. Marvin Test Solutions Math Works Maury Microwave MaXentric Technologies LLC MCV Microwave Measure Tech Inc. Mega Circuit Inc. Mega Phase Menlo Microsystems Inc. Metamagnetics Inc. Mician GmbH Micro Harmonics Corporation	3039 4099 10050 8094 8090 6050 5042 12016 9117 8050 5060 3009 10016 11036 10042 9008 7110 5096 4007 9068

IMS2022 EXHIBITORS

First-time exhibitors are highlighted in blue.

IMS2022 EXHIBITOR LIST AS OF 18 MAY 2022 | For the most up-to-date information, please visit: ims-ieee.org

IWISZUZZ LAHIDHUK LISTAS U	10 WAT 20
MicroFab Inc.	5095
Micro-Mode Products Inc.	10068
Microsanj LLC	9018
Microsembly	6110
Microwave Applications Group	6062
Microwave Development Labs	6100
Microwave Engineering Corp.	12021
Microwave Journal	8018
Microwave Product Digest	10021
Microwave Products Group	6029
Microwave Techniques LLC	12008
Microwaves & RF MilliBox	3042
	7101
Millimeter Wave Products Inc.	1050
Mini-Circuits	9030 11041
Mini-Systems Inc. MISOTECH	3076
Misubishi Electric US Inc.	4068
MixComm, a Sivers Semiconductor Co.	12013
Modelithics Inc.	7010
Modular Components National	3037
Morion US LLC	8011
Mouser Electronics Inc.	6096
MPI Corp.	9058
MRSI Systems, Mycronic	4096
MtronPTI	6012
Muegge Gerling	5103
MWS Wire Industries	11013
Nano Dimension	11013
Naprotek	12030
Narda-MITEO	5068
NDK America	4091
NEL Frequency Controls Inc.	3101
NEOM Tech & Digital	8120
Networks International Corp.	7014
NI	5020
Ningbo Somefly Technologies	10011
Nisshinbo Micro Devices Inc.	11077
Noisecom	8019
Norden Millimeter Inc.	6011
Northrop Grumman	7022
Nxbeam Inc.	10018
Oak-Mitsui Technologies	12035
Ohmega Technologies	9075
OMMIC	2096
Ophir RF Inc.	4074
Optomec	7012
Orbel Corp.	11038
Orolia USA	7011
Otava Inc.	6102
Pasquali Microwave Systems	5082
Passive Plus Inc.	10054
Pasternack	9014
PCB Power Inc	11014
PCB Technologies USA	10090
Pickering Interfaces	11006
Pico Technology	8114
Piconics Inc.	9082
Planar Monolithics Industries	8080 10007
Plymouth Rock Technologies	10007
PM Industries Inc.	6029
Pole/Zero Corporation Polyfet RF Devices	3021
PPG Cuming Microwave	10044
PPI Systems Inc.	8096
Presidio Components Inc.	2035
PRFI Ltd.	2055
pSemi Corporation	7078
Purecoat North LLC	12044
O Microwave Inc.	5008
QIQ Systems Inc.	2033
QML Inc.	12019
OMMI	2096
Qorvo	3030

	nation, piec
QP Technologies	4009
Quantic Electronics	8076-9081
Quarterwave Corp.	11015
Queen Screw & Mfg Inc	8102
QuinStar Technology Inc.	3049
QWED Sp. z o.o	7099
R&K Company Limited	3022
Rapidtek Technologies Inc.	4095
Reactel Inc.	9006
RelComm Technologies Inc.	8071
Reldan	2072
Remtec Inc.	2050
Renaissance Electronics/HXI	10010
Renesas Electronics America Inc	9042
Res-Net Microwave	6040
Response Microwave Inc.	4013
	1044
RF Globalnet	
RF Morecom Corea	8092
RF Superstore	11075
RFHIC Corp.	3096
RF-Lambda USA LLC	8060
RFMTL	11080
RFMW	10030
Richardson Electronics Ltd.	3006
Richardson RFPD	4090
RJR Technologies Inc.	8073
-	
RLC Electronics Inc.	6009
Rogers Corp.	2030
Rohde & Schwarz USA Inc.	7056
Rosenberger North America	6056
RUPPtronik	3015
SAF North America LLC	10014
Samtec Inc.	5074
San-tron Inc.	10022
Sawnics Inc.	9089
Schlegel Electronic Materials	2074
Schmid & Partner Engineering AG	8110
Scientific Microwave Corp.	6042
Seikoh Giken USA Inc.	12012
SemiDice (Micross Components)	3067
Semigen	12034
Sensorview Co. Ltd.	9102
Sentec E&E Co. Ltd.	10074
SGMC Microwave	6092
Shimifrez Inc.	8098
Siglent Technologies NA	11017
Signal Hound	9078
Signal Integrity Journal	8018
Signal Microwave	2005
SignalCore Inc.	3071
Sivers Semiconductors	12014
Skyworks Solutions Inc.	6068
Smiths Interconnect	7006
SOITEC	4112
SOMACIS	3078
Sonnet Software Inc.	
	4042
Southwest Microwave Inc.	4080
Space Machine & Engineering Corp.	11067
SpaceForest sp z.o.o.	12020
SRTechnology Corp.	5012
SSI Cable Corporation	7009
Starwave Sdn Bhd	3094
State of the Art Inc.	9021
Statek Corp.	10012
Stellant Systems Inc.	7096
-	
Stellar Industries Corp.	6060
STMicroelectronics Inc.	7114
StratEdge Corp.	4089
Sumitomo Electric Device Innovations	4036
Summit Interconnect	1042
Sung Won Forming	4014
SuperApex Corporation	2092
Susumu International (USA) Inc.	2080
SV Microwave	8006
	2000

U	
Switzer	5099
SynMatrix Technologies Inc.	3018
Syscom Advanced Materials Inc.	4097
Tactron Elektronik GmbH	2029
Tagore Technology Inc.	10059
Tai-Saw Technology Co. Ltd.	5007
Taitien	3079
TDK Corporation of America	11011
TDK-Lambda Americas	11009
Tecdia Inc.	3053
Tektronix	10096-3
Telcon RF Pharmaceutical Inc.	10077
Teledyne Technologies	3068
Telegartner Inc.	10060
Telonic Berkeley Inc.	3075
TESLA Consortium	12080
TEVET	7040
Texas Instruments	9050
The Boeing Company	11053
The Espy Corporation	6029
The Goodsystem Corp.	11061
Thin Film Technology Corp.	6103
TICRA	11069
Times Microwave Systems	5073
TMY Technology Inc.	2052
Tower Semiconductor	4017
TPT Wire Bonder	2090
Transcat Inc.	9099
Transcom Inc.	4006
Transline Technology Inc.	6044
TRF Electronics	9093
TRM Microwave	8076
TRS-RenTelco	7109
Ulbrich Specialty Wire Products	3017
Ultra	2022
United Monolithic Semiconductors	2076
University of Bristol	12078
University of Texas at Dallas	12082
UTE Microwave Inc.	5016
Vacuum Engineering & Materials	12038
Vanguard Electronics	3095
Varian Corporation	3091
Varioprint AG	11042
Vaunix Technology Corp.	5014
Ventec International Group	2013
ViaMEMS Technologies Inc.	9113
Virginia Diodes Inc.	8036
Virtual Integrated Analytics Solutions	6112
Vishay Intertechnology Inc. Waka Manufacturing Co. Ltd.	7090 9076
WAVEPIA Co. Ltd.	11018
WavePro	
Waveero	3000 9090
WayvGear	5109
Weinschel Associates	10005
Wenzel Associates Inc.	9079
Werlatone Inc.	5080
West Bond Inc.	5080 6074
Wevercomm Co. Ltd.	10080
Wilev	3013
- 5	6080
WIN Semiconductors Corp. Winchester Interconnect	4059
WIPL-D	5058
Wireless Telecom Group	8019
Withwave Co. Ltd	8104
WL Gore & Associates Inc.	8104
Wolfspeed Inc.	2060
WUPATEC	12015
XMA Corporation	4008
X-Microwave	4008 9081
Xpeedic Technology Inc.	5011
Y.TECH	10095
Yuetsu Seiki Co. Ltd.	2104
Z-Communications Inc.	3103
	3103

()) IMS

2023 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM

11–16 JUNE San Diego Convention Center San Diego, California

Join Us in San Diego and Experience the Coolest Ideas Under the Sun!

IMS2023 is the centerpiece of Microwave Week 2023, which includes the RFIC Symposium (www.rfic-ieee.org) and the ARFTG Microwave Measurement Conference (www.arftg.org). It is the world's largest technical symposium and industry exhibition for MHz through THz professionals. IMS2023 will feature an exciting Technical Program that compliments this year's theme of Coolest Ideas Under the Sun think high efficiency, thermal management, model-based design, space and aerospace systems, and so much more!

IEEE

IMS2023 Conference Themes

At IMS2023, we will have several focus themes to highlight a number of areas of RF and microwave engineering that are of topical interest or impact. These themes are:

- Systems & Applications
- Space
- Biomedical Applications
- RF & Microwaves in Latin America

Interested in participating in IMS2023 as a speaker, attendee or exhibitor? Scan the QR code to sign up for updates.

For more information: ims-ieee.org/ims2023

FEE MICROWAVE THEOR

- DC to 40 GHz Low Noise Coaxial Amplifiers
- Ultra Low Noise Single Bias Cryogenic Amplifiers
- Space Qualified Low Noise Amplifiers
- S, C, X, Ku, Ka Band Waveguide Amplifiers
- SATCOM Amplifiers
- Wideband Amplifiers
- Medium Power Amplifiers
- Multioctave Amplifiers
- Surface Mount Amplifiers
- Desktop Amplifiers
- Custom Amplifiers

All AmpliTech amplifiers are MADE IN USA with: Reverse Voltage Protection - Internal Regulation - State-of-the-Art PHEMT Technology - MIL-883, MIL-45208 Assembly Standards

Specialty Microwave Waveguide Assemblies Waveguide to Coax Adapters Crossguide Couplers High Power Dummy Loads Integrated Systems Block Downconverters 1:2 Tx Protection Switch Panels Redundant LNA Controllers/Plates Subsystems Specialized Electronic Assemblies

An AmpliTech Group Company

- Ceramic Quad Flat Package Cerguad
- Cerdip Package
- Cerpac Package
- Leadless LCC / Leaded LDCC Chip Carriers
- Hybrid Package Multi-Chip Module (MCM)
- Side-Brazed Dual In-Line Ceramic Package (DIP)
- Small Outline Integrated Circuit Package (SOIC)
- Ceramic Pin Grid Array (CPGA) Ceramic / Plastic
- Transistor Outlines TO Headers / TO Power / TO Cans
- PQFN PQFP PSOIC / PSSOP
- SMD (Surface Mount Devices)

Spectrum Semiconductor Materials is a World-Wide Authorized Distributor of packages and lids for IC assembly 155 Nicholson Ln, San Jose, CA 95134 Phone: 408-435-5555 • 408-435-8226 • Email: <u>ssm_sales@spectrum-semi.com</u> • www.spectrum-semi.com

Our AmpliTech Group MMIC Design Center is now offering our award-winning and industry leading amplifier designs as semiconductor chips allowing them to be designed into products and solutions requiring the smallest of form factors unsuitable for connectorized solutions. This innovation opens up vast new markets for AmpliTech and means every amplifier using these MMIC's will benefit from decades of experience translated to the smallest of IC's ready for mass deployment.

A Nasdaq Company traded

CUME VISIT

155 Plant Avenue, Hauppauge, NY 11788 Phone: 631-521-7831• Fax: 631-521-7871 Email: info@amplitechinc.com • www.Amplitechinc.com

under symbol "AMPG"

PROGRAMS: GPS III GOES Oceansat-2

Iridium NEXT

Chandrayaan 1

Mangalyaan

MILITARY & COMMERCIAL SPACE SOLUTIONS

HIGH RELIABILITY EEE-INST-002 & TOR Compliant Workflows

25+YEARS **SPACE** HERITAGE

LC Filters | Crystal Filters | Ceramic Filters | Printed Filters | Switched Filter Banks | Integrated Assemblies

Visit NIC's Booth

#7014 at IMS 2022

913.685.3400 15237 Broadmoor **Overland Park, KS**

e-mail: sales@nickc.com

ASCENDING TO NEW HEIGHTS