MS Connecting Minds. Exchanging Ideas.

-

6

- 21 JUNE 2024

TOT BOL TO HALL OF TO A HALL OF THE PROPERTY OF THE PROPERTY OF TO A HALL OF TOTAL O

Insteee of and the se visit

PRECISION RF SOLUTIONS

High-Frequency Interconnects from 18 GHz to 110 GHz

Samtec offers a full line of off-the-shelf products for microwave and millimeter wave applications from 18 GHz to 110 GHz. Solutions include high-performance microwave cable assemblies, ganged multi-position assemblies, cable connectors, adaptors, and push-on or threaded board connectors. Board launch design services are also available.

Visit Samtec at Booth 1531

samtec.com/ims

MICROWAVE WEEK

IS ALL ABOUT CONNECTIONS...

From social media to downloading papers in real time we've got you covered!

JOIN THE CONVERSATION:

Make sure you're engaging with IMS2024 on our social channels:

 \mathbb{X}

Follow us on Twitter: http://twitter.com/MTT_IMS

Follow us on Instagram: http://instagram.com/mtt_ims

Like us on Facebook: http://www.facebook.com/IEEE.MTTS.IMS

in Engage with fellow attendees on LinkedIn: https://www.linkedin.com/groups/2375668/ (Group Name: IEEE MTT-S International Microwave Symposium (IMS))

You Tuhe Follow us on YouTube: http://www.youtube.com/user/mttims

Don't forget to use the official IMS hashtag: #IMS2024

IMS MICROWAVE WEEK:

There's an app for that! Download papers in real time!

The IMS Microwave Week app is now available in the Apple App Store and Google Play store. Install the app on your Android or iOS device to view the full schedule of Workshops; Technical Lectures; IMS, RFIC, and ARFTG Technical Sessions; Panel Sessions; Social Events: and Exhibition Information. You will be able to download the technical content that you registered

for, e.g., IMS and/or RFIC papers/ presentations, workshop presentations; as well as locate exhibitors and explore everything that IMS has to offer! The app now includes an opt-in Social Networking Feature that lets you search for fellow attendees who opted-in to be contacted for networking. Download the app today!

To download the app, search for 'IMS Microwave Week' on the app store for your device or scan a QR code below.

Wifi is available throughout the **Convention Center!** SSID: IMS2024 Password: Washington

IMS2024 Table of Contents

IMS2024 Chairs' Welcome
Washington, DC Overview
IMS2024 Steering Committee
Technical Paper Review Committee
Getting Around the Convention Center
Coffee Break Times
Week At-A-Glance, On-Site Registration Hours and Boxed Lunch Information 8
Exhibit Hall Hours and Happenings
Exhibitor Index

uay		۲
Workshops	- 1	3
Quantum Boot Camp	. 14	4
RFIC Technical Lecture	. 14	4
Al/ML Boot Camp	. 14	4
RFIC Plenary Session	. 1	6
RFIC Reception and Symposium Showcase	.1	7

18

32

49

64

74

Monday

,
WPT Boot Camp
RF Boot Camp
RFIC Technical Sessions
Workshops
Intersociety Panel Session
RFIC Panel Session
IEEE Fellows
Three Minute Thesis Competition
IMS Industry Showcase
IMS Plenary Session
IMS Welcome Reception

Tuesday

RFIC Technical Sessions
IMS Technical Sessions
Industry Workshops
Student Design Competitions
Young Professionals Events
StartUp Panel Session
RFIC Panel Session
IMS Panel Session
RFIChat
МісгоАррз
IMS Executive Forum
IMS Student Paper Competition
WIM/YP Joint Panel Session
WIM Reception
HAM Radio Reception
YP Reception
MTT-S Journals Reception 48

Wednesday

Industry Workshops
Build Your Own "Foxhole" Radio Receiver
Entrepreneurship 101 Panel Session
Future G Summit
Intersociety Panel Session
IMS Technical Sessions
MicroApps
StartUp Panel Session
The Next Top StartUp Competition
Early Career Paper Competition
IMS Interactive Forum Session
Advanced Practice and Industry Paper Competitions
MTT-S Awards Banquet

Thursday

Fridav

IMS Technical Sessions
Industry Workshops
IMS Panel Session
MicroApps
StartUp Panel
IMS PostDeadline Paper Session
IMS Closing Session
103rd ARFTG NVNA Users' Forum
103rd ARFTG On-Wafer Users' Forum72

WELCOME TO IMS2024 IN WASHINGTON, DC scott barker, sanjay raman, IMS2024 GENERAL CHAIRS

t is our great honor to welcome you to Washington, DC. The last time the IEEE MTT-S International Microwave Symposium was held in the U.S. capital was 1980! Much has changed since then for both the IMS and DC while some of the best parts of both are alive and well. In 1980 there were ~1,500 attendees, 160 papers, and 123 exhibitors; today the IMS has grown to ~10,000 attendees, ~350 papers, and ~550 exhibitors. Both the Automatic Radio Frequency Techniques Group (ARFTG - first co-located with IMS in 1979) and the Radio Frequency Integrated Circuits Symposium (RFIC - initially launched as the IEEE Microwave and Millimeter-Wave Monolithic Circuit Symposium in 1982) are still vibrant components of Microwave Week. The Washington DC region is home to many high technology companies, major aerospace and defense firms, government science & technology agencies, and national laboratories, including the U.S. Army and Navy Research Labs, and the National Institutes of Standards and Technology.

The area around the Walter E. Washington Convention Center, including Penn Quarter, Chinatown, and the Shaw district, is one of the most dynamic parts of the city with a phenomenal restaurant and bar scene, and within 10 blocks of the White House and the National Mall. And Washington, DC boasts the greatest number of completely free museums – there are over 40 museums and attractions in Washington, DC that can be visited without charge, including the 17 museums and galleries that together comprise the Smithsonian Institution. It is quite convenient to get around the city and the region using DC's extensive Metro system, which also connects directly to Reagan National Airport (DCA) and Dulles International Airport (IAD).

IMS2024 thematic areas that highlight the symposium's focus on "Capitalizing Across the Spectrum." In addition to showcasing a broad spectrum of engaging technical topics, IMS2024 will celebrate the diversity of contributions, talents, and accomplishments across our community's "human spectrum" throughout the week. Moreover, the major technical themes of the conference will emphasize the role our host city of Washington, DC has played in supporting the use and management of the RF-to-THz spectrum, including: Systems and Applications, Aerospace and Security, Spectrum Coexistence and Sustainability, each as thematic days, and **Emerging Technologies and Directions. The Future Directions** theme for this year's IMS is Wireless Power Transfer, with a boot camp, workshops, and collection of special, focus and panel sessions on this emerging topic area. On Wednesday, we will also be co-locating with the industry-focused FutureG Summit, which we are jointly sponsoring with the IEEE Microwave Theory and Technology, Antennas & Propagation, Communications, and Photonics Societies. We are also continuing forward several industry engagement efforts introduced in recent years, including the industry showcase session immediately before the Monday plenary session, best industry paper awards, and session keynotes. In addition, we are emphasizing Diversity, Equity, Inclusion and Belonging, cutting across all aspects of the symposium. This effort starts with the creation of a new Executive Committee level position - the Outreach and Inclusion Chair. We have also started collecting additional optional demographic information from our attendees so that we are able to understand and appreciate the great diversity that already exists within our community as well as identify those areas where we need to be more inclusive. In addition, we have updated our selection processes to ensure that our conference events are representative of the diversity of our community. We hope this effort will continue into the future so that the IMS will continue to lead the way as the premier international microwave conference!

We are thrilled to welcome you to IMS2024 in Washington, DC for Microwave Week, 16-21 June 2024. And you will have another opportunity to experience IMS in the capital of the U.S. as IMS will return to Washington, DC in 2029!

GET TO KNOW WASHINGTON, DC

id you know that Washington, DC is not part of any state? It is actually a 68 square-mile US territory. In 1789 the US Constitution required the creation of federal district that is exclusively controlled by the US Congress.

DC was designed by Pierre Charles L'Enfant in 1791 for then president, George Washington. L'Enfant was a French engineer who served in the Continental Army during the American Revolutionary War. His grand plan centered on a 2-mile stretch from the US Capital to the Potomac River, to be used as a grand public walk. This area was named the National Mall. It is surrounded by museums, memorials and monuments.

The avenues of DC were designed to support transportation and ease of movement. It's a very walkable city. However metro is also a great way to get around quickly. When riding the Metro, you should always walk on the left and stand on the right side of any escalator. Never stand on the left side of a Metro escalator.

DC is a waterfront city. There are two main harbors, the National Harbor and the Washington Harbor, along the Potomac River. You can take riverboat cruises and Duck-boat tours. Just be sure to book ahead.

Most of the museums are free! However, be sure to make reservations ahead of time. In an effort to provide a great experience, museums

otomac

limit the number of admissions per hour or half hour. If you wait until the day before, to reserve a ticket, the museum might not have any availability.

SHORT LIST OF MUSEUMS

Air and Space Museum American History Museum American Indian Museum African American History and Culture Museum (The IMS Welcome Reception will be held here) African Art Museum Asian Art Museum American Art Museum International Spy Museum (The WIM, YP, HAM and MTT-S Journals Receptions will be held here) Museum of Natural History National Gallery of Art National Archives Museum (home of the Declaration of Independence, Bill of Rights and the US Constitution) Smithsonian Museums (17 museums and galleries)

United States Holocaust Memorial Museum

SHORT LIST OF MONUMENTS

Washington Monument Lincoln Memorial Jefferson Memorial

> World War II Memorial Korean War Veterans Memorial Vietnam Veterans Memorial Martin Luther King Jr Memorial Franklin Delano Roosevelt Memorial US Government Offices Library of Congress Supreme Court

United States Treasury The White House US Capitol

f course, there are great places to eat as well! You can head to U Street and have a meal at the well known Ben's Chili Bowl. https://washington.org/find-dc-listings/benschili-bowl. There are tons of options in the city's Penn Quarter and Chinatown districts. https:// washington.org/places-to-eat/penn-quarterchinatown-washington-dc. MasterChef's Gordon Ramsay has planted roots in DC with the iconic Hell's Kitchen, new to The Wharf. For seafood, try the Old Ebbitt Grill, opened in 1856. The restaurant is home to a famed raw bar happy hour and is known for events like its annual Oyster Riot.

Tidal Basin

IMS2024 STEERING COMMITTEE

WASHINGTON, DC

EXECUTIVE COMMITTEE

Scott Barker, General Co-Chair Sanjay Raman, General Co-Chair Dalma Novak, TPC Co-Chair Bobby Weikle, TPC Co-Chair Ryan Baker, MP3 Co-Chair Sherry Hess, MP3 Co-Chair Tony Ivanov, LAOC Chair Janet O'Neil, LAOC Co-Chair Ramesh Gupta, Finance Chair Kavita Goverdhanam, Outreach and Inclusion Chair Mark Rosker, Plenary Session Chair Danilo Manstretta, RFIC Conference General Chair Dominique Schreurs, ARFTG Conference General Chair Marco Spirito, ARFTG Conference General Co-Chair Elsie Vega, Event/Conference Manager Robert Alongi, Treasurer Amanda Scacchitti, MP3 Manager Carl Sheffres, Exhibition Director Stefanie Cunniffe, Exhibition Operations Manager Ivar Bazzy, Exhibition Management JK McKinney, IMSEC Chair

TPC (TECHNICAL PROGRAM COMMITTEE)

Dalma Novak, TPC Co-Chair Bobby Weikle, TPC Co-Chair Mark Rosker, Plenary Session Chair Sandy Owens, Electronic Paper Management Mike Hamilton, Workshops Chair Alirio Boaventura, Workshops Co-Chair Michael Grady, Workshops Co-Chair Steve Turner, RFIC Workshop Liaison Steven Bowers, PostDeadline Papers Chair Mona Hella, RFIC Technical Lectures Liaison Theodore Reck, Tutorials/Primers/

Pre-Conference Chair Eric Bryerton, RF Boot Camp Co-Chair Cliff Rowland, RF Boot Camp Co-Chair Parrish Ralston, Panel Sessions Co-Chair Zachary Drikas, Panel Sessions Co-Chair Thomas Clark, Focus/Special Sessions Vice Chair Vicki Chuang, Focus/Special Sessions Vice Chair Matt Morgan, Interactive Forum Chair Shamima Afroz, Student Paper Competition Co-Chair Liu Lei, Student Paper Competition Co-Chair Sami Hawasli, Early Career Paper Competition Co-Chair Jane Gilligan, Early Career Paper Competition Co-Chair Jeffrey Hesler, Keynote Talks Rod Waterhouse, Industry Showcase Chair, Industry/ Advanced-Practice Paper Competitions Co-Chair, Future G Summit Co-Chair Kiki Ikossi, Student Design Competition Co-Chair Kasyap Patel, Student Design Competition Co-Chair

Brian Novak, MicroApps Co-Chair Jean Kalkavage, MicroApps Co-Chair Paul Matthews, Industry Workshops Co-Chair Ryan Walsh, Industry Workshops Co-Chair Jasming Grosinger, TMTT Co-Chair Jeffrey Hesler, TMTT Co-Chair

MP3 (MARKETING/PUBLICITY/ PROMOTION/PUBLICATIONS)

Ryan Baker, MP3 Co-Chair Sherry Hess, MP3 Co-Chair Carl Sheffres, Alisa Ufland, Marketing Strategy Amanda Scacchitti, MP3 Manager, Publications, Website Editor, Marketing Communication (TPC Liaison) JK McKinney, IMSEC Marketing

IK McKinney, IMSEC Marketing Strategy Liaison

- Jim Assurian, Electronic Media (Website, Social Media, Mobile App)
- Mark Slater, Website/Mobile App Professional Staff Janine Love, Microwave Magazine Guest Editor, Marketing Communication (Local Arrangements
- Liaison) Charlotte Blair, Marketing Communication (Local
- Arrangements Liaison)

LAOC (LOCAL ARRANGEMENTS/ OPERATIONS COMMITTEE)

Tony Ivanov, LAOC Chair Elsie Vega, Conference Planner, Event/Conference Manager, Protocol/Gifts Robert Alongi, Treasurer Susie Horn, Student Volunteer, Visa Support Gina Adam, Student Volunteer Coordination Chair Dmitry Ruzmetov, Student Volunteer Coordination Co-Chair Dillian Waldron, Conference Planner, Entertainment Cassandra Carollo, Conference Planner Quenton Bonds, StartUp Pavilion Mohamed Abdin, StartUp Pavilion Berhanu Bulcha, STEM Chair

Vijayanand (Vijay) Kowtha, STEM

AFFINITY GROUPS

Kavita Goverdhanam, Outreach and Inclusion Chair Christal Gordon, Young Professionals Chair Janine Love, Women in Microwaves Chair Charlotte Blair, Women in Microwaves Co-Chair Tom Weller, Project Connect Co-Chair Netra Pillay, Project Connect Co-Chair Rhonda Franklin, Project Connect Rashaunda Henderson, Project Connect

EXHIBITION MANAGEMENT

Carl Sheffres, Exhibition Director Stefanie Cunniffe, Exhibition Operations Manager Ivar Bazzy, Corporate Management

IMS2024 TECHNICAL PAPER REVIEW COMMITTEE

Pere L. Gilabert

Roberto Gomez-Garcia

WASHINGTON, DC

Peter Aaen Mohammad Abu Khater Wael Ahmad Richard Al Hadi Arnaud Amadjikpe Shuhei Amakawa Sankaran Aniruddhan **Bayaner Arigong** Peter Asbeck Bhushan Asuri **Dominique Baillargeat** Joseph Bardin Taylor Barton Simone Bastioli Ramon Beltran Roee Ben-Yishay Tibor Berceli Pierre Blondy Luciano Boglione Fabrizio Bonani Vicente Boria-Esbert Hermann Boss Slim Boumaiza Steven Bowers David Brown Shi Bu Jan Budroweit **Guillaume Callet** Vittorio Camarchia **Charles Campbell** Richard Campbell Christian Carlowitz Nuno Carvalho Robert Caverly Malgorzata Celuch Sudipto Chakraborty Wing Shing Chan Hong-Yeh Chang Goutam Chattopadhyay Wenquan Che

Austin Chen Kenle Chen Wenhua Chen Zhizhang Chen Pei-Ling Chi Taiyun Chi Jun Choi Debabani Choudhury Kevin Chuang Riccardo Colella Jonathan Comeau Julio Costa **Christian Damm** Kaushik Dasgupta Marcus Dasilva Debasis Dawn William Deal Sagar Dhar Damla Dimlioglu Marco Dionigi Tarek Djerafi Georgios Dogiamis Paul Draxler John Ebel Najme Ebrahimi Danny Elad Rudy Emrick Kamran Entesari Mohamed Fahmi Aly Fathy Patrick Fay Ricardo Figueiredo Marc Franco Rhonda Franklin Ahmed Gadallah Alessandro Galli Markus Gardill Edward Gebara Anthony Ghiotto Kamran Ghorbani

Xun Gong Jose Luis Gonzalez Jimenez Kavita Goverdhanam Katia Grenier Jasmin Grosinger Changzhan Gu Kamel Haddadi Amelie Marietta Hagelauer Naoki Hasegawa Rashaunda Henderson Deukhyoun Heo Payam Heydari Damon Holmes **Glenn Hopkins** Da Huang Daguan Huang James Hwang Tony Ivanov David Jackson Mona Jarrahi Mahdi Javid Sanggeun Jeon Jesse Moody Abhishek Jha Amit Jha Dan Jiao Xin Jin **Rob Jones Telesphor Kamgaing** Tumay Kanar Pekka Kangaslahti Allen Katz Arvind Keerti Roni Khazaka Erin Kiley Yanghyo Kim **Dietmar Kissinger** Kevin Kobayashi Alexander Koelpin Nicholas Kolias Kenneth Kolodziej Pawel Kopyt Sushil Kumar Ko-Tao Lee Timothy Lee Wooram Lee Dennis Lewis Changzhi Li Chun-Hsing Li Sensen Li Li Yang Chenyu Liang Julien Lintignat Changjun Liu Lei Liu Ruochen Lu Alon Ludwig Xun Luo Haifeng Lyu Stephen Maas

Peter Magnee Raafat Mansour Jon Martens Holger Maune Kenneth Mays Julio Navarro Jav McDaniel Davide Mencarelli Chinchun Meng Nizar Messaoudi Paolo Mezzanotte Shirin Montazeri Antonio Morini Amir Mortazawi Steve, Wai Yin Mung Koichi Murata Michel Nakhla Jeffrev Nanzer Julio Navarro Edward Niehenke Thas Nirmalathas Kenjiro Nishikawa Joachim Oberhammer Hiroshi Okazaki Vladimir Okhmatovski Arnaldo Oliveira Abbas Omar Philipp Pahl Valentina Palazzi Marcus Pan Arthur Paolella Giacomo Paolini **Dimitris Pavlidis** Jose Pedro Luca Perregrini Anh-Vu Pham Anna Piacibello Luca Pierantoni Marco Pirola Jean-Olivier Plouchart Nils Pohl Zoya Popovic Arnaud Pothier Praveen Prabha Neelam Prabhu Gaunkar **Dimitra Psychogiou** Joe Qiu Ruediger Quay Oscar Quevedo-Teruel Frederick Raab Antonio Raffo Hamed Rahmani Jose Rayas-Sanchez Theodore Reck Shahed Reza **David Ricketts** lan Rippke Michael Roberg Patrick Roblin Davi Rodrigues Steven Rosenau Muhammad Ruhul Hasin

Mohammad Sadrabadi Abhishek Sahu Kamal Samanta Costas Sarris **Dominique Schreurs** Kaushik Sengupta Munkyo Seo Hasan Sharifi Tushar Sharma Ki Shin Nosherwan Shoaib **Constantine Sideris** Hjalti Sigmarsson Christopher Silva Tejinder Singh **Richard Snyder** Zhe Song Jason Soric Marco Spirito Joseph Staudinger Wolfram Stiebler Steven Stitzer Almudena Suarez Adrian Tang zhenzhou Tang Smail Tedjini Manos Tentzeris Werner Thiel Chris Thomas Cristiano Tomassoni Zuo-Min Tsai Thomas Ussmueller Vadim Yakovlev Diddi Varish Suresh Venkatesh Roberto Vincenti Gatti **Dieff Vital** Jacquelyn Vitaz Sorin Voinigescu Martin Vossiek Rajah Vysyaraju Christian Waldschmidt Walter Wall Guoan Wang Huei Wang Jan Wessel Chung-Tse Michael Wu Hung-Wei Wu Ke Wu Kazuya Yamamoto Tao Yang Siva Yegnanarayanan Ming Yu Mohammad Zarifi Hualiang Zhang Lei Zhang Qi-jun Zhang Yulong Zhao Xinyu ZHOU Anding Zhu Volker Ziegler Samet Zihir

9TH STREET

GETTING AROUND AT IMS2024

WALTER E. WASHINGTON CONVENTION CENTER

Level Two

(Level 2)

Exhibit Halls D & E / Meeting Rooms 201–210/ East and West Overlook

Salons

(Level 1)

9TH STREET

Coffee Breaks

Sunday	AM-09:40-10:10	Level 1 Meeting Room Foyer
	PM-15:10-15:40	Level 1 Meeting Room Foyer
Monday	AM-09:40-10:10	Level 1 Meeting Room Foyer
	PM-15:10-15:40	Level 1 Meeting Room Foyer
Tuesday	AM-09:40-10:10	IMS Exhibit Floor
	PM-15:10-15:40	IMS Exhibit Floor
Wednesday	AM-09:40-10:10	IMS Exhibit Floor
	PM-15:10-15:40	IMS Exhibit Floor
Thursday	AM-09:40-10:10	IMS Exhibit Floor
	PM-15:10-15:40	Level 1 Meeting Room Foyer

Sponsored By:

Level Three

(Level 3)

Ballroom, Meeting Room 301-306, Kitchen

WEEK AT-A-GLANCE

		Sunday 16 June 2024	Monday 17 June 2024	Tuesday 18 June 2024	Wednesday 19 June 2024	Thursday 20 June 2024	Friday 21 June 2024
	Workshops						
	RFIC Technical Lectures						
	RFIC Plenary Session, Reception, Industry Showcase						
	Quantum Bootcamp						
	AI/ML Bootcamp						
	RF Bootcamp						
	WPT Bootcamp						
	RFIC Technical Sessions and Interactive Forum						
щ	Three Minute Thesis						
ANG	IMS Industry Showcase, Plenary and Welcome Reception						
GL	IMS Technical Sessions						
-A	IMS StartUp Program						
-1	IMS Student Design Competition						
XF	IMS Interactive Forum						
	Panel Sessions						
Μ	Future G Summit						
	Exhibition						
	MicroApps and Industry Workshop	S					
	IMS Executive Forum						
	Industry Hosted Reception						
	Amateur Radio Reception						
	Young Professionals Reception						
	Women In Microwaves Reception						
	PostDeadline Paper Session						
	IMS Closing Session						
	103rd ARFTG						

Workshops Technical Lectures RFIC Bootcamp Three Minute Thesis IMS Panel Sessions Future G Summit Exhibit Hall Activities Focus Groups ARFTG

On-site registration for all events will be available at East Registration in the Grand Lobby of the Walter E. Washington Convention Center.

ON-SITE REGISTRATION HOURS

Saturday, 15 June	08:00 - 17:00
Sunday, 16 June	07:00 - 18:00
Monday, 17 June	07:00 - 18:00
Tuesday, 18 June	07:00 - 18:00
Wednesday, 19 June	07:00 - 18:00
Thursday, 20 June	07:00 - 16:00
Friday, 21 June	07:00 - 10:00

BOXED LUNCH DISTRIBUTION:

Boxed Lunch Distribution will take place Sunday–Friday in the Level 1 Meeting Room Foyer of the Walter E. Washington Convention Center.

Note: Boxed Lunches are included with Workshops and Boot Camps. They are also available for pre-purchase in the registration system. through 14 June 2024 (the advance registration deadline).

THANK YOU TO OUR SPONSORS

OFFICIAL MEDIA SOURCE OF MTT-S MEDIA PARTNERS

MEDIA SPONSORS everythingRF

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Sunday, 16 June 2024

WORKSHOP TITLE

WORKSHOP ABSTRACT

WSA **Addressing Microwave** The growing field of quantum computing relies on a broad range of microwave technologies and has spurred development of microwave devices and methods in new operating regimes. But despite the significant progress made in the last decade in the **Measurement and Engineering** science, engineering and characterization of quantum computation systems, several challenges remain to be overcome before **Challenges in Realising** quantum computation can become practically usable. One of the most promising quantum computing technologies is the superconducting quantum computing platform, which relies on microwave waveforms and devices to control and readout quantum **Practical Quantum Computers** bits, typically at cryogenic temperatures of tens of milli-kelvin. The advancement of quantum computing implies an increase in number of qubits within or across quantum processors leading to a significant increase in microwave cabling and components Sponsor/s: IMS; ARFTG operating at such cryogenic temperatures to operate the quantum processors. This puts stringent requirements on heat-load, space, Organizers: Manoj Stanley, NPL; and signal integrity under these extreme temperatures. The challenges of realizing such practical large-scale quantum computing systems present microwave engineers and metrologists with opportunities in cryogenic microwave modeling, design, measurement, Masahiro Horibe, AIST; Nick Ridler, NPL and characterization of cryogenic semiconductor and superconductor components, circuits, systems, and networks. This workshop reviews the existing microwave measurement and engineering challenges in realizing a practical quantum computer and addresses **ROOM: 149AB** some of these challenges. The workshop includes talks from end-users, instrument and equipment manufacturers, academia, and 08:00 - 17:20 national measurement labs from around the world. The pursuit of ubiquitous connectivity and the rapid evolution of wireless communication technologies such as 5G and mm-wave have spurred a growing demand for RF front-end design that can operate across a wide frequency spectrum for various communica-**Highly Reconfigurable** WSB **Mixed-Signal RF Front-End** tion standards. However, achieving highly reconfigurable transceivers for multiple communication standards and frequencies **Approaches for 5G and Beyond** presents a series of challenges. Accommodating various frequency bands necessitates multiple bulky filters in both transmitter and receiver, leading to increased form factor, cost, and insertion loss. High-speed communications typically with high peak-to-average power ratios (PAPR) require more power backoff in power amplifier (PA) for good linearity while compromising transmitter efficiency. Sponsor/s: RFIC; IMS Moreover, ultra-high-speed communications such as 5G mm-wave call for ultra-low-jitter local oscillator (LO) and clock generation Organizers: Anis Ben Arfi, Analog with fine frequency resolutions. This workshop focuses on addressing these challenges through the approaches of RF/analog/digital Devices; Hao Wang, MediaTek hybrid design techniques. Critical circuit topologies including RF digital-to-analog converter (RFDAC), digital power amplifier (DPA), **ROOM: 144AB** N-path filter/mixer, magnet-free circulator, and fractional-N sub-sampling all-digital phase-locked loop (ADPLL) are presented. The 08:00 - 11:50 audiences are invited to explore the integration of these techniques to achieve unified transceiver architectures with exceptional reconfigurability. Five prominent speakers from leading institutes and companies will present their latest works and share insights on the development of advanced RF front-end design. Two speakers will delve into the design of RFDACs and DPAs in high-efficiency transmitters. Afterwards, another two speakers will discuss N-path filters and mixers, as well as magnet-free circulators, for high-selectivity receivers and full-duplex transceivers. Finally, the fifth speaker will guide our attentions to the LO and clock generation, by presenting the design of ultra-low-jitter fractional-N all-digital sampling phase-locked loops. The workshop serves as a collaborative platform, bringing together experts from academia and industry to discuss and envision the future of highly reconfigurable transceiver IC design. Through the presentations and the panel discussion session, attendees will gain valuable insights into the cutting-edge techniques driving the development of RFIC design. This workshop gathers together world experts, research and industry leaders to report and discuss the latest RF/MW technology Latest Developments in RF/ WSC developments that continue to drive innovation in high-power applications in Aerospace & Defense, as well as in ISM. Specific areas **MW Devices, Circuits and** of interest discussed in this workshop span from vacuum tubes (VEDs) to solid-state transistors for active devices, to circuit design System Technology for and techniques, as well as specific applications that leverage the benefits of the evolving technology. This full-day workshop is geared towards practitioners in the high-power RF/MW aerospace, defense, industry, scientific and medical areas who want to gain a **High-Power Applications in** broader perspective on the latest technology developments as well as nuances specific to each different application. Novices and **ISM and Aerospace & Defense** newcomers to the A&D and ISM industry will also gain a comprehensive exposure and understanding of the RF/MW landscape that drives innovation in this specific arena. Sponsor/s: IMS Organizers: David Brown, BAE Systems; Gabriele Formicone, Integra Technologies ROOM: 209ABC 08:00 - 17:20 Recently, new research projects toward Space Based Solar Power (SBSP) and related beam Wireless Power Technology (WPT) are WSD New Trends of R&D of Space born simultaneously in the world. The SBSP was originally called a Solar Power Satellite (SPS) and it was proposed in 1968. The SBSP **Based Solar Power and Beam** is a future power station in geostationary satellite orbit and the electricity generated in space is transmitted wirelessly via microwave Wireless Power Technology beam to the ground. In the past 50 years, research and development projects toward the SBSP were carried out several times in US, in Japan, and in Europe. In each R&D project, new SBSPs were designed with the latest technology at the time. What is different now Sponsor/s: IMS is that the industrial revolution is happening in parallel. For example the commercial WPT (both coupled WPT and far-field WPT) market has started in the past 10 years. Revolutionary start-up companies for space applications are developing. Based on changes Organizers: Christopher T. in the business market, new R&D projects toward the SBSP have now started in US, in Japan, in Europe, in China, and in other Rodenbeck, U.S. Naval Research countries. In this workshop, we focus on the new technologies and new R&D projects of the SBSP and related beam WPT R&Ds. The Laboratory; Naoki Shinohara, requirements of the beam WPT for the SBSP are accurate beam forming with a huge phased array, high-efficiency microwave Kyoto University transmitter/generators, novel high-efficiency devices, high-efficiency rectifiers with diodes, harmonization between the WPT beam and conventional wireless systems, and suppression of interference between the WPT beam and space plasma/atmosphere, etc. **ROOM: 144C** ITU-R (International Telecommunication Union Radiocommunication Sector) recommends frequencies suitable for commercial WPT, 08:00 - 17:20especially weak-powered wide-beam WPT in 2022. The Japanese government established new radio regulation of the weak-powered vide-beam WPT in 2022. Radio regulations are under discussion for beam WPT suitable not only for the SBSP but also for WPT aided drone, etc, which is the expected 2nd step of commercial WPT in the world. The WPT technologies introduced in this session are

widely applicable both to the SBSP and to 2nd step commercial WPT.

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Sunday, 16 June 2024

WORKSHOP ABSTRACT

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WSE	Multi-Functional RF Integrated Passive Components for 6G, Radar Systems, and Beyond Sponsor/s: IMS Organizers: Guoan Wang, University of South Carolina; Qingfeng Zhang, SUSTech; Sukomal Dey, IIT Palakkad; Xun Luo, UESTC ROOM: 201 08:00 – 17:20	With ever-increasing advances in the fields of the modern wireless technologies (eg 6G and radar systems), the design of compact and multi-functional transceivers to meet the stringent requirements demanded by such systems remains a great challenge. In this context, multi-functional RF integrated passive components (IPCs) are considered key building circuits for their development. These components are based on novel miniaturized structures and specific technologies that can be utilized for the implementation of RF, microwave, mm-wave, and THz wireless systems. This unique workshop focuses, for the first time, on the area of IPCs and their applications in the context of 6G wireless and radar scenarios by reporting recent research findings in this exciting field. This includes current progress in miniaturized RF passive components enabling multi-functional and adaptive radios from the aspects of thin-films integration (eg ferroelectric and ferromagnetic thin films), on-chip tuning techniques (eg diodes and transistors) and novel THz (eg f-band, D-band, etc) passive components with application in active circuits will be presented. Furthermore, state-of-the-art transmission line synthesis and development will be presented. In particular, the technique of mode diversity and mode composition will be explained and discussed with a number of examples, including an emerging concept of mode selectivity. Theoretical and experimental results will be presented in an effort to explore structural integration, physical agility, multifunctional operation, and performance enhancement of integrated transmission lines. In addition, multi-functional on-chip reflectionless components (eg CMOS and SiGe passives) and integrated antenna sub-system, along with hybrid acoustic-wave lumped-element microwave resonator technologies for the realization of advanced compact microwave filtering devices are described. Finally, the latest advances in the area of RF to THz passive micro-systems for multi-functional applications in 6G, radar system
WSF	3D Heterogeneous Integration and 3D-Packaging Targeting 5G-6G mm-Wave and Sub-THz Communication and Sensing Sponsor/s: IMS; RFIC Organizers: Didier Belot, STMicroelectronics; Pierre Busson, STMicroelectronics ROOM: 143ABC 08:00 - 11:50	The 6G Telecom generation forecasts mm-wave and sub-THz applications as Fronthaul and Backhaul mm-wave and sub-THz wireless links; Reflective Intelligent Surface between mini-cell station and devices mainly in mm-wave frequency range; Short distance ultra-high data-rate mm-wave and sub-THz wireless data storage transfer; Automotive Joint communication and Sensing Radars; Health and Industrial mm-wave and sub-THz Radars and imagers; and other applications which are not yet defined. A Key challenge facing us is how to manage multi-processes dies with antennas integrated in the same object, reducing losses, and then increasing power efficiency and, at the same time targeting the cost efficiency. The workshop will discuss the trade-off Power Efficiency/Cost Efficiency of different 3D assembly strategies and will try to have a picture of the most promising research in the domain, through topics which will address as III-V GaN/Si and InP/Si, with SiGe and or CMOS Heterogeneous Integration; Wafer to Wafer; Die to Wafer, Backend of line co-integration; mm-wave sub-THz packaging, including Antenna integration, Si-Interposers, organic interposers, and other packaging 3D approach. The power efficiency is max data rate ability, with the max distance covered by the transceiver over its power consumption, the cost efficiency is max data rate ability, with the max distance covered by the transceiver over its cost. This simple relation does not take into account the cooling equipment, if necessary, the reliability, and finally the environmental impact of the different strategies. These last points are difficult to quantify at the research level.
WSG	Digital Intensive Transmitters From RF to mm-Wave: Empowering Intelligent and High Data-Rate Wireless Communication Sponsor/s: IMS; RFIC Organizers: Austin Chen, Peraso, Inc.; Huizhen Jenny Qian, Xidian University; Jeffrey Walling, Virginia Tech ROOM: 143ABC 13:30 – 17:20	Advanced CMOS technologies enable direct bits-to-RF conversion, which provides higher energy-efficiency and more compact die area, especially for sub-7GHz. Meanwhile, such digital intensive transmitters, with highly reconfigurable nature are well adapted for multifunction and intelligent communication systems. When the operation bands extend to mm-wave to meet the increasing data streaming requirements of modern communication systems (eg 5G, 6G, etc), digital intensive transmitters also exhibit potential advantages compared to traditional Cartesian transmitters. This workshop discusses techniques of digital intensive transmitters operating from sub-7GHz to mm-wave with continuous evolution of higher output power, efficiency, data-rate, and multi-functions such as distortion self-calibration, multi-band, multi-mode, etc.
WSH	Operating at the Extreme: RFIC Design Techniques for Operation Beyond the PDK Limits Sponsor/s: RFIC Organizers: Amrita Masurkar, BAE Systems; Travis Forbes, Sandia National Laboratories ROOM: 147AB 08:00 - 11:50	Emerging applications such as satellite-based internet, quantum computing, high-temperature sensors and communications systems, and massive Internet-of-Things (IoT) wireless networks are enabling disruptive advances in computational ability, global internet coverage, device-to-device communications, and industrial and military sensing abilities. However, all of these extreme environments require integrated circuits to operate well beyond environmental ranges and operating voltages provided by the standard Process Development Kits (PDK) and require a combination of design skills traditionally held in non-overlapping design communities. This workshop will bring together these design communities through experts from academia and industry to provide attendees with a holistic view on overcoming these challenges. Starting near zero Kelvin, the first talk will give an overview of circuit design at cryogenic temperatures including effects on devices, matching, and how to overcome these effects. Taking it hotter, the next talk will cover device effects operating well above 150C and ongoing research to enable high yield systems at these temperatures. Making the workshop RAD, the third talk will give an overview of radiation effects on CMOS circuits and ways to design RF and analog circuits to overcome these effects. Taking it out of this world, the fourth talk will cover challenges. The final talk will cover dense wireless environments with high-power RF blockers pushing the limits of the supported process supply voltage and RFIC design techniques to filter and operate through this interference. To end the workshop, we will bring the experts together for cross-pollination of ideas through a panel interaction with attendees. Can this panel create a space radiation hardened, any temperature-stable, high-power handling device? Come and find out!
WSI	From Prototype to Product: Overcoming Productization Challenges Sponsor/s: RFIC Organizers: Bichoy Bahr, Texas Instruments; Joseph Cali, Raytheon; Oren Eliezer, Samsung ROOM: 147AB 13:30 – 17:20	Are you a student or a professional researcher seeking insights into the process of productizing ideas? Perhaps you are an experienced designer keen on understanding how fellow professionals have surmounted challenges during product development. If so, this workshop is tailored for you! Industry experts representing high-volume commercial integrated circuit (IC) companies, IP developers, aerospace, and defense sectors will share their experiences of navigating the journey from conceptualization to fielded product. Engaging discussions will encompass a diverse array of topics, spanning high-speed analog to digital converters, digital to analog converters, mm-wave packaging, multi-antenna beam steering calibration, RF front-ends and the benefits of RF/packaging co-simulation. During the developmental phase of prototypes, constraints related to budgets and schedules often hinder thorough validation, verification, and testing procedures. Consequently, this limitation can lead to the emergence of latent defects that remain undetected until later stages of productization. In these scenarios, research teams and start-ups may be primarily focused on core innovations and transformative concepts, only to encounter obstacles when the company aims to expedite the implementation of these ideas. For instance, in startup environments lacking dedicated facilities for environmental testing, issues like low-temperature oscillations (which are unobservable during simulations) may go unnoticed until far too late. The instances discussed within this workshop serve as valuable examples that can form the basis of a comprehensive checklist, enabling a smoother transition from the prototype phase to the final product. We hope this workshop could potentially prevent the need for extensive reiterations, saving both time and resources for you and your colleagues.

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Sunday, 16 June 2024

WORKSHOP TITLE

and Broadband Matching

Design Techniques

Sponsor/s: IMS; RFIC

University College Dublin

R00M: 145AB

08:00 - 11:50

Ultra-Wideband Efficient PAs

Organizers: Salvatore Finocchia-

ro, Qorvo; Teerachot Siriburanon,

Flexible Arrays as the Next

Frontier in Wireless Communi-

WORKSHOP ABSTRACT

The evolution of 5G and the need for increased capacity drive new transmitter requirements. Broadband and multiband operation requires the Power Amplifiers (PAs) to support a wider operating frequency range and high data rate require large instantaneous bandwidths, further extended by carrier aggregation, while delivering high power and maintaining high efficiency. Additionally, modern systems require complex modulation schemes exhibiting high Peak-to-Average-Power Ratio (PAPR) of more than 10dB. When operating at high Output-BackOff (OBO), Drain and Power Added Efficiency (DE and PAE) of traditional PA is typically low, with the majority of power dissipated in heat! New efficiency enhancement architectures and design techniques, from Waveform Engineering, to Load Modulation (Doherty, Outphasing and LMBA) and Supply Modulation (Envelope Tracking), have been explored in recent years. The design techniques exploring broadband combining and broadband matching. This workshop will introduce recent trends in PA architectures, PA design and broadband matching techniques addressing the three major challenges listed above, ie wide operating bandwidth, wide instantaneous bandwidth, and large PAPR. We will look at design trade-offs to improve and maintain efficiency while satisfying system requirements which include ACLR, EVM, and other metrics for 5G New Radio (5GNR) waveforms. The concept of linearization and Digital Predistortion (DPD) will be introduced in the context of evaluating the PA performance with respect to system requirements are invited to address these issues and inform the audience about the latest advances in this field.

With global networking data traffic predicted to reach petabytes in the next few years, mm-wave wireless communications enabled by silicon-based phased arrays is poised as a game-changer for new infrastructure applications. Emergence of untethered space constellations such as low-earth orbit (LEO) satellite communications approximately lying between 500km to 800km altitude such as Amazon Kuiper (590–630km), SpaceX Starlink (550–750km), OneWeb (1200km), and Telesat Lightspeed (1015–1325km) will further benefit global connectivity. By utilizing the fallow spectrum at mm-wave, it is expected to provide gigabits-per-second data rates to multiple users including under-served and remote areas. While planar mm-Wave phased arrays have cemented their position in communication systems, the future of satellite constellation hosting thousands of antenna elements is dependent on the choice of frequency, application, field-of-view, and form factor. Conformal phased arrays, which encompass mechanically flexible, foldable, or stretchable arrays, are one of the promising new frontiers of array development. Conformal antennas provides multiple degrees of freedom to the scan angle that is typically limited by antenna aperture. Recent works have demonstrated new viable research directions at the antenna-RF interface with the adaptive control that will be presented in this workshop.

Algorithms and processing pipelines based on Artificial-Intelligence (AI) and Machine-Learning (ML) techniques are on a solid trajectory to become an integral part of the next generation of wireless systems. While the exploration of AI/ML to RF applications started decades ago, their development has accelerated recently with the increasing availability of advanced AI knowledge, high-capacity compute infrastructure, and wireless testbeds for generation and training data sets. Nevertheless, the development of AI-enhanced wireless systems remains a challenging multi-disciplinary task, where EM, RF, IC design, signal processing, and ML expertise are all equally important. Emerging 6G wireless communications systems and mm-wave radar applications call for accelerated developments in this area. In particular, power consumption and latency requirements may require the implementation of optimized feature extraction methods in mixed-signal ICs closer to the antennas. The goal of this workshop is to bring together a set of active researchers to share their vision and expertise. The speakers span academic and industrial research institutions from across the globe and the presentations will cover both wireless communications and radar.

As the Moore's law is coming to an end, separating large systems into smaller chips based on their functionality is not only a cost-benefit solution but it allows the complex system to expand beyond theoretical size limits. Although chiplet technology has been around for many years, it has not been till the rise of the Al supercomputers and the accompanied unprecedented computational demand that put the spotlight on SiPs (System in Package). There are different aspects to the design of chiplets including the packaging, the high-speed chip-to-chip interconnect and the interoperability and standardization which allow the SiP built by the combination of chips from different vendors. There are multiple benefits to the chiplet-based architectures. Breaking down the large complex systems into smaller chips based on their functionality means better yields and lower cost due to the lower probability of manufacturing defects. Cost reduction can also come with customizing the process technology for each chiplet (eg using advanced nodes for GPUs and CPUs and less expensive technologies for memories and analog interfaces). Design upgrades can also be done on certain functional blocks without the need for redesigning the whole system. To take full advantage of chiplet-based architectures, the D2D (die-to-die) interface needs to be standardized. The interoperability allows the developer to use multiple vendors. In terms of the packaging, development of 3DHI (3D Heterogeneous Integration) that enables stacking up separately manufactured components, is the perfect technology choice for chiplet-based architectures. Additionally, the ever-increasing demand for high-throughput communication links and high-resolution radar sensors is driving the development of future wireless systems at higher operating frequencies. In order to support multiple functionality, the flexibility requested to those systems, is driving the adoption of large phased array antennas. Heterogeneous technologies and vertical 3D integration will play a vital role in enhancing the performance and functional density, along with reducing the size and costs, of such RF systems. In addition to the already mentioned standardization, both on the digital and RF side, 3DHI will pose a new set of technology (processes and substrates), design (MMICs, RFIC, analog, power management, passives), packaging and thermal challenges. This workshop will address some of the challenges mentioned above both from the digital and RF point of view, combining commercial and defense perspectives with state-of-the-art research in the field. Experts from industry and academia that are at the frontline of these developments are invited to address these issues and inform the audience about the latest advances in this field.

WSK

WSI

WSM

SM

cations Sponsor/s: IMS; RFIC

Organizers: Antoine Frappé, IEMN (UMR 8520); Najme Ebrahimi, University of Florida; Subhanshu Gupta, Washington State University

ROOM: 145AB 13:30 - 17:20

From Waves to Insights: AI/ ML Techniques for Wireless Communications and Radar

Sponsor/s: RFIC

Organizers: Alberto Valdes-Garcia, IBM T.J. Watson Research Center; Arun Paidimarri, IBM T.J. Watson Research Center; Young-Kai Chen, Coherent ROOM: 150AB 08:00 – 17:20

Future of Chiplet Technology and 3D Heterogeneous Integration

Sponsor/s: IMS; RFIC

Organizers: Bahar Jalali Farahani, Cisco; Ko-Tao Lee, Qorvo; Mahdi Parvizi, Cisco; Salvatore Finocchiaro, Qorvo ROOM: 151AB 08:00 - 17:20

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Sunday, 16 June 2024

WORKSHOP ABSTRACT

	WORKSHOP TITLE	WORKSHOP ABSTRACT
WSN	Integrated Circuits for Control and Characterization of Quantum Processors Sponsor/s: RFIC Organizers: Joseph C. Bardin, Google Quantum AI and UMass Amherst; Vadim Issakov, Technische Universität Braunsch- weig ROOM: 152AB 08:00 – 17:20	Large-scale quantum computers promise to enable the solution to certain classes of problems for which no other efficient approaches are currently available. The realization of such a computer is hence a major open challenge that is being aggressively researched by academic and industrial teams across the globe. There are several types of competing qubit realizations, each offering different advantages. Yet, all of these realizations require some form of cryogenic cooling and most require RF electronics for control and potentially for readout (in several realizations the readout is optical). Moreover, integrating the control and/or readout electronics at an intermediate temperature stage within the cryostat is an attractive option. However, the circuits still need to fulfill stringent requirements on power consumption, spectral purity, noise budget etc, making their optimization challenging. As such, there is a growing opportunity for the RFIC community to influence this emerging field. In this full-day workshop the state-of-the-art in cryogenic RF circuits for various types of qubit realizations is reviewed. System considerations associated with control ICs targeting different qubit types. The talks will present different RF circuit design solutions for various types of qubits, superconducting qubits, and trapped-ion qubits. The workshop features distinguished speakers from leading companies and academia, who will present their latest advances on cryogenic circuits for quantum computer applications. A brief concluding discussion will round-off the workshop to summarize the key learnings on the wide range of aspects presented during the day.
WS0	Linearity and Efficiency Challenges in Wide Modulation Bandwidth Power Amplifier Design Sponsor/s: RFIC Organizers: Debopriyo Chowd- hury, Broadcom; Hyun-Chul Park, Samsung ROOM: 146A 08:00 - 17:20	The rapid increase in data throughput in recent 5G (FR1 and FR2), Wi-Fi (6E and 7), and 6G (FR3 in the near future) requires high-efficiency, linear and wideband RF power amplifiers. However, it is extremely challenging to simultaneously enhance the linearity and efficiency of the power amplifier, especially for spectrally-efficient and wide modulation bandwidths (eg 320MHz for Wi-Fi 7, 100MHz for 5G FR1, and >400MHz for FR2). Higher order constellations like 4k-QAM for Wi-Fi 7, 256-QAM for FR2 make PA design a challenging task. This workshop will cover the "practical" and "most promising" linearity and efficiency improvement techniques for RF power amplifiers and transmitters. Several techniques like wideband envelope tracking, Doherty power amplifiers, digital transmitters, mm-wave power amplifiers etc, will be covered in a tutorial type fashion, with emphasis on practical aspects of the design.
WSP	mm-Wave and Sub-THz Broadband Phased Array FE for Communication and Sensing Sponsor/s: RFIC Organizers: Didier Belot, STMicroelectronics; Hao Gao, Technische Universiteit Eindhoven; Wanghua Wu, Samsung ROOM: 146B 08:00 - 17:20	With technological advancement, the spectrum of possibilities within the realms of communication and sensing is expanding astonishingly. One of the most exciting frontiers in this domain is the utilization of mm-wave and sub-THz frequencies, offering a gateway to revolutionary advances in wireless communication and sensing. The workshop collects the transformative capabilities of mm-Wave and Sub-THz technologies, which collectively span the frequency range from 30GHz to 300GHz. This previously underutilized spectrum is now at the forefront of technological breakthroughs. At the heart of this paradigm shift lies the broadband front-end, a critical component that enables the seamless harnessing of mm-Wave and Sub-THz frequencies for applications that were once considered futuristic. One of the central themes of the workshop is the advancement of high-frequency communication technologies. Explore the latest developments in ultra-fast data transfer, low-latency networks, and the mm-wave and Sub-THz spectrum integration in wireless systems. Witness how these innovations reshape the connectivity landscape, enabling applications fike 6G, autonomous vehicles, smart cities, etc. The workshop takes participants on a journey through the diverse applications of mm-wave and Sub-THz sensing, from radar systems that can revolutionize wireless communication to high-resolution imaging techniques that can potentially transform human life.
WSQ	Phased Arrays and MIMO for mm-Wave 6G/WiFi and Sensing Systems Sponsor/s: IMS; RFIC Organizers: Jin Zhou, MediaTek; Kostas Doris, NXP Semiconduc- tors; Oren Eliezer, Samsung; Rocco Tam, NXP Semiconductors ROOM: 146C 08:00 - 17:20	The reliance on digital beamforming and large arrays in mm-wave is increasing as communication and sensing systems migrate to higher frequency bands and occupy wider bandwidths. In this workshop experts in communications, automotive radar/sensing, antennas and silicon and packaging technologies will share their related experience and vision and discuss various challenges and solutions at the system, circuit, and technology levels.
WSR	Sensing Modalities for the Road to Autonomy and Beyond Sponsor/s: IMS; RFIC Organizers: Matt Markel, Spartan Radar, Zeshan Ahmad, Cambridge Terahertz ROOM: 204ABC 08:00 - 17:20	Sensing modalities are enabling technologies for the ongoing revolution in autonomy. This is evident from the global sensor market that was valued at B in 2019 and is projected to reach over B by 2028. Camera, LiDAR, and RADAR dominate the autonomy field, and IR/thermal is now emerging as an important modality in that space. However, today none of the sensing modalities alone can solve the abundant challenges needed for robust, reliable, and trust-worthy autonomy in difficult environments. To that end, this workshop brings together a unique mix of top industry, academic, and regulatory body speakers to discuss these challenges, the current solutions, and what we can expect today's research to bring for tomorrow. The speakers bring a breadth of expertise and experiences ranging from electronics to photonics, integrated systems to sensor fusion, and OEMs to regulators; this insight comes together in a workshop-concluding panel discussion that dives deep into key forces pushing us towards – and holding us back from – autonomy.

WALTER E. WASHINGTON CONVENTION CENTER

QUANTUM BOOT CAMP

08:00 - 11:50

Sunday, 16 June 2024 Room: 206

The quantum computing industry relies heavily on microwave technologies, yet the connection between MTT-S and the quantum efforts is still nascent. For the quantum computing industry to succeed, it is essential to train multidisciplinary engineers who understand both quantum physics and microwave engineering. Quantum engineering is a fast-growing interdisciplinary field of research in which microwave and RF engineers can play an important role, especially in the areas of Quantum Sensing, Quantum Communications, and in the Microwave Control of Quantum Computing platforms.

The Quantum Boot Camp will introduce the basics of quantum engineering, targeting microwave engineers who want to understand how they can make an impact in this emerging field. It features speakers covering quantum engineering basics with a focus on the design, fabrication, control, and measurement of quantum system, with a focus on superconducting qubits. The course will conclude with an industry perspective from one of the leading commercial providers of quantum computing.

The intended audience includes new engineers, engineers who may be changing their career path, marketing and sales professionals seeking a better understanding of quantum technology, as well as current college students looking to learn more about the practical aspects of Quantum technology.

Organizers: Joseph Bardin, Google; Nizar Messaoudi, Keysight Technologies

Speakers:Introduction to Quantum Computing
William Oliver, MITMicrowave Engineering of Quantum
Computers
Kevin O'Brien, MITIndustry Perspective: Quantum
Computing at Google
Ofer Naaman, Google Quantum AI

12:00 - 13:30

RFIC TECHNICAL LECTURE

LECTURE TITLE

Noise in Oscillators: From Understanding to Design

> **Speaker:** Professor Ali Hajimiri, *California Institute* of *Technology*

Sunday, 16 June 2024 Room: 207AB

WALTER E. WASHINGTON CONVENTION CENTER

In this technical lecture, we will discuss the fundamentals of noise processes within an oscillator and the associated design insights. We will start with understanding evolution of noise from device and external noise sources to phase noise. We will develop the time-varying phase noise model, discuss some of the nuances involved in it, and how a deeper understanding of that process can help us identify additional intuition in design of voltage controlled oscillators (VCO). We will investigate specific applications of this model to various kinds of oscillators, such as LC ad ring VCOs and how it fits with the general picture of frequency generation.

ABSTRACT

WALTER E. WASHINGTON CONVENTION CENTER

AI/ML BOOT CAMP 13:00 - 17:20 Sunday, 16 June 2024 Room: 206
--

The AI/ML Boot Camp will present the basics of Artificial Intelligence (AI)/machine learning (ML) for microwaves. The course is targeted to general audiences in the microwave community who are not necessarily experts in AI/ML. To start with, the course addresses basic questions such as: what is AI/ML. Why are AI/ML tools relevant for microwave community. How can AI/ML be used in microwave design, and how can it be adopted in microwave circuits and systems. We also address what the benefits and limitations of using AI/ML in microwave technologies are.

The bootcamp will introduce basic types of machine learning methods such as multilayer perceptrons, radial basis function networks, convolutional neural networks, time-delay neural networks, recurrent neural networks, long-short term memory networks, generative adversarial networks, and reinforcement learning. Examples of applications of Al/ML to microwaves will be presented.

This bootcamp is intended for engineers who want to learn the basics of AI/ML or are interested in using AI/ML for microwave applications, marketing and sales professionals who are interested in understanding the basics and relevance of AI/ML for microwaves, and university students who like to acquire the basic knowledge of AI/ML. We will also provide ample opportunities for audience interaction and Q&A.

Organizers: Qi-Jun Zhang, Carleton University; Costas Sarris, University of Toronto; Ulf Gustavsson, Ericsson

Al and Machine Learning for Microwave Design – An Introduction Qi-Jun Zhang, Carleton University Al for 3D Radar – Approaches and Opportunities Asaf Tzadok, *IBM T.J. Watson Research Center* Scientific Machine Learning: Principles, Methods and Applications Costas Sarris, University of Toronto Augmented Intelligence for End-to-End Design Xia (Ivy) Zhu, Intel Corporation

ElectronicDesign.

Electronic Design is the premier independent information source for electronics engineers that provide must-have, fully comprehensive coverage of the electronics industry through its vast network of experts.

Microwaves&RF

Microwaves & RF is the RF/microwave engineer's critical source for new products and technology insights for communications and wireless-related designs.

Military+Aerospace Electronics.

Military + Aerospace Electronics is the leading media resource serving managers and engineers involved in electronic and electro-optic design for military, space, and aviation.

Delve into our annual Salary Survey using our new interactive tool!

RFIC PLENARY SESSION 17:30 - 19:00

The 6G Network at the Center

Sunday, 16 June 2024

Ballroom

ABSTRACT: 6G is no longer a mere long-term aspiration. It is a framework of technologies that will become reality by the end of the decade. We are transitioning from the idea-generation phase to systematization and proof-of-concept realization. In this talk, we give our vision of the 6G network at the center that is an essential pilar equal to artificial intelligence (AI) and cloud to shape the future of human augmentation. We will summarize the main technology areas for 6G and provide some research highlights. These include new spectrum technologies in the upper midband 7-15 GHz, which the industry identified as a priority for 6G, sub-THz bands, which is essential for future backhaul and has potential for joint high-capacity communication and sensing, AI, which may cause a paradigm shift for air interface design, and energy efficient radio access, which is seen as one of the key requirements for 6G.

SPEAKER BIO: Peter Vetter is President of Bell Labs Core Research and Bell Labs Fellow. He leads an eminent global research organization with the mission to create game changing innovations that define the future of networks and insure portfolio leadership for Nokia's core business. During an international career of thirty years in research leadership mostly in fixed and mobile networks, he and his teams have realized several world-first system demonstrations and successfully transferred industry leading concepts to the business groups. He received a PhD at Ghent University (Belgium) in 1991 and was a post-doctoral fellow at Tohoku University (Japan) until 1993. He then joined the research center of Alcatel (now Nokia) in Antwerp and has worked at Bell Labs in Murray Hill, New Jersey since 2009. He is IEEE Fellow and Honorary Professor of KU Leuven.

CMOS Technology Evolution for Revolutionary Impact

KEYNOTE SPEAKER: Prof. Tsu-Jae King Liu, Dean of the College of Engineering, UC Berkeley

ABSTRACT: Steady advancement in complementary metal-oxide semiconductor (CMOS) integrated circuit (IC) technology has enabled the capability and affordability of computing and communication devices to improve exponentially over time, giving rise to cloud computing and the Internet of Things, which together with advances in machine learning have ushered in the era of Artificial Intelligence. To date, CMOS technology advancement has been driven primarily by market demand for faster and more energy-efficient digital computing; as such, transistor scaling to sub-10 nm technology nodes has presented challenges for analog/RF IC design. In this keynote presentation I will discuss evolutionary advancements in CMOS technology that can address these challenges, focusing on relevant figures of merit, for revolutionary impact.

SPEAKER BIO: Tsu-Jae King Liu received the B.S., M.S. and Ph.D. degrees in Electrical Engineering from Stanford University. She joined the Xerox Palo Alto Research Center as a Member of Research Staff in 1992, to research and develop high-performance thin-film transistor technologies for flat-panel display applications. In 1996 she joined the faculty of the University of California, at Berkeley, where she now holds the Roy W. Carlson Distinguished Professorship in Engineering. From 2000 to 2004 and from 2006 to 2008, she served as the Faculty Director of the UC Berkeley Microfabrication Laboratory. From July 2004 through June 2006 she was Senior Director of Engineering in the Advanced Technology Group of Synopsys, Inc. (Mountain View, CA). From 2008 through 2012, Professor Liu was the Associate Dean for Research in the College of Engineering at UC Berkeley. She also served as Faculty Director of the UC Berkeley Marvell Nanofabrication Laboratory in 2012. From 2012 to 2016 she served as Chair of the Electrical Engineering Division, and from 2014 to 2016 she served as Chair of the EECS Department.

Professor Liu's awards include the Ross M. Tucker AIME Electronics Materials Award (1992) for seminal work in polycrystalline silicon-germanium thin films; an NSF CAREER Award (1998) for research in thin-film transistor technology; the DARPA Significant Technical Achievement Award (2000) for development of the FinFET; the Electrical Engineering Award for Outstanding Teaching at UC Berkeley (2003); the IEEE Kiyo Tomiyasu Award (2010) for contributions to nanoscale MOS transistors, memory devices, and MEMS devices; the UC Berkeley Faculty Mentor Award (2010); the Electrochemical Society Dielectric Science and Technology Division Thomas D. Callinan Award (2011) for excellence in dielectrics and insulation investigations; the Intel Outstanding Researcher in Nanotechnology Award (2012); the Semiconductor Industry Association (SIA) University Researcher Award (2014); and the Semiconductor Research Corporation (SRC) Aristotle Award (2016). Her research activities are presently in advanced materials, fabrication processes and devices for energy-efficient electronics. She has authored or co-authored over 500 publications and holds over 90 patents.

Professor Liu is a Fellow of the IEEE and a member of the U.S. National Academy of Engineering, and serves on the Board of Directors for Intel Corporation.

Have you downloaded the IMS and Microwave Week Mobile App?

View papers and presentations in real time, locate exhibitors and explore everything that IMS has to offer!

To download the app, search for 'IMS Microwave Week' in the app store for your device or scan a OR code.

RFIC RECEPTION AND SYMPOSIUM SHOWCASE

Featuring Systems & Applications Forum and Best Student/Industry Paper Showcase

Ballroom Foyer, Walter E. Washington Convention Center

The RFIC Interactive Reception starts immediately after the Plenary Session and will highlight the Student Paper Awards finalists, the Industry Paper Awards finalists, and the Systems and Applications Forum in an engaging social and technical evening event with food and drinks. Authors of these showcases will present their innovative work, summarized in poster format. Some showcase papers will also offer live demonstrations or be presented via a monitor.

Sunday, 16 June 2024

19:00-21:00

Student Best Paper Finalists' Showcase/Demonstrations:	Showcase D=Demonstration
 RMo2C-3 A 2.8-4.3 GHz Simultaneous Dual-Carrier Transformer-Coupled Passive Mixer-First Receiver Supporting Blocker Suppression Jamie Ye, Cornell University RMo1A-4 A Blocker-Tolerant mm-Wave MIMO Receiver with Spatial Notch Filtering Using Non-Reciprocal Phase-Shifters for 5G Applications Shahab Mohin, Massachusetts Institute of Technology RMo1C-1 A 2.4 GHz, -19dBm Sensitivity RF Energy Harvesting CMOS Chip with 51% Peak Efficiency and 24 dB Power Dynamic Range Jing-Ren Yan, National Yang Ming Chiao Tung University RTu2C-1 An Efficient, High Power Q-Band SiGe HBT Power Amplifier With a Compact Four-Way Wilkinson Power Combiner Balun for Emerging Very Low-Earth-Orbit SATCOM H. Lee, Ajou University RMo2A-2 A Reconfigurable Ultra Compact Bi-directional Amplifier with a Build-in-Self Notch Filter for K-Ka-band Satellite Communication Jian Zhang, Tsinghua University RTu1B-3 A Switchless Dual-core Triple-Mode VCO Achieving 7.1-to-15.7 GHz Frequency Tuning Range and a 202.1 dBc-Hz Peak FOM at 3.7 Kelvin Yue Wu, University of Macau 	 RMo2B-3 A 52.3-to-67.3GHz 35.8-kHz-Resolution Triple-Push DCO Exploiting Source-Combining Technique for Third-Harmonic Enhancement Achieving 196.4dBc-Hz Peak FoMT at 10MHz Offset Qiao Jiang, University of Macau RMo1B-3 A G-Band Glass Interposer Technology for the Integration of an Amplified Noise Source based on SiGe BiCMOS Technology Maya Alawar, University of Lille RTu3C-1 A 360 GHz Single-element Multi-mode Orbital Angular Momentum Cavity Antenna-based Transmitter in 90nm SiGe BiCMOS Wei Sun, University of California, Los Angeles RTu1B-1 Broadband Noise Characterization of SiGe HBTs Down to 4K Jad Benserhir, École Polytechniquecole Polytechnique Fédérale de Lausanne RMo3C-2 A K-Band 4-Element 8-Beam Phased-Array Receiver with Hybrid Vector Interpolation and Impedance-Adapted Multibeam Combining Techniques for Satellite Communications Hang Lu, Zhejiang University
Industrial Paper Showcase/Demonstrations:	Showcase D=Demonstration
 RMo1B-2 Heterogeneously-Integrated Gallium Nitride and Indium Phosphide Devices for Ka-band Amplifiers Justin Kim, Pseudolitic RMo1C-4 A 21-27-GHz Frequency Quadrupler in 0.13um SiGe BiCMOS with 0-dBm Pout and 40-dBc HRR for Wideband 5G Applications Caglar Ozdag, IBM Research RTu1C-4 A 5G FR2 n260/n259 Phased-Array Transmitter Front-End IC in 28-nm CMOS FD-SOI with 3-Stack Power Amplifier Employing OPA-Based Bias Scheme and Cross-Tied Inductor Topol Jongwon Yun, Samsung 	RMo1B-4 A 22FDX® Wi-Fi PA demonstrating a new LDMOS Device with 10V Breakdown achieving Output Power of 29.5dBm at 40% PAE Arul Balasubramaniyan, GLOBALFOUNDRIES RMo1C-2 A 45 nm RFSOI CMOS-based 24.25-29.5 GHz 2×16-Channel Phased- Array Transceiver IC for 5G NR Applications Jooseok Lee, Samsung
Systems and Applications Forum Showcase/Demonstrations:	Showcase D=Demonstration
 RMo1B-5 A Reconfigurable Compact Multiband RF Bi-directional Coupler for sub-6 GHz RF Front-Ends in RF SOI CMOS Switch Technology Ting-Li Hsu, Technical University of Munich RMo2A-5 A Δ-Modulated Linear-in-dB Attenuator for On-Chip Power Detection with 0.12 dB Resolution in RF SOI CMOS Switch Technology Ting-Li Hsu, Technical University of Munich RTu2C-3 An Efficient Ku-Band Two-Way Vertical-like Power-Combining Power Amplifier using Merged Inter-stage Transformers Achieving 23-23.4 dBm Psat and 45.2-46.6% Peak PAE in 65nm CMOS Joon-Hyung Kim, Chungnam National University RTu1B-2 A Fully Integrated Three-Channel Cryogenic Microwave SoC for Qubit State Control in 9Be+ Trapped-Ion Quantum Computer operating at 4 K Peter Toth, Technische Universität Braunschweig RTu4C-3 A 200 GHz Wideband and Compact Differential LNA Leveraging an Active Balun Input Stage in 16nm FinFET Technology Ethan Chou, University of California, Berkeley RMo4A-1 A D-Band Complex Neutralization Cascode Power Amplifier with A Source-Gate Driven Cascode for Enhanced Bandwidth and Efficiency Mohamed Eleraky, Swiss Federal Institute of Technology 	 RMo1A-3 A 32-Element 25.8-to-30.8 GHz Phased-Array CMOS Transmitter with Programable Piecewise Linear Temperature-Compensation Technique Achieving 10.002 dB.°C Gain Variation across -60-to-85 °C Dongze Li, Tsinghua University RMo3A-4 A 25-31GHz Compact True Power Detector with >33dB Dynamic Range in 40nm Bulk CMOS Haoqi Qin, Fudan University, Shanghai, China RMo4C-3 A 10ns Delay Range 1.5GHz BW True-Time-Delay Array-based Passive- Active Signal Combiner with Negative-Cap Stabilized RAMP for Fast Precise Localization RMo1C-5 Design of a Dual-Mode Coil-Reuse Data Acquisition System for Miniaturized Wirelessly Powered Biopotential Sensing Nodes Hamid Jafari Sharemi, University of California, Los Angeles RMo1C-3 A Fully Integrated Microplastic Detection SoC with 0.1-3GHz Bandwidth and 35dB Dynamic Range for Narrow-Band Notch RF MEMS Sensor System S - B Ku, Korea University

Monday, 17 June 2024

2024 WPT BOOT CAMP

08:00 - 11:50

Room: 206

As our society and economy continue to digitize rapidly, the number of wireless nodes in every square kilometer has become staggering. Experts predict that there could be as many as 10⁷ devices in a single square kilometer, which poses a significant environmental and economic challenge to sustainability. However, there is hope in the form of wireless power technologies (WPT). These technologies offer a promising way to deliver power wirelessly to the nodes, eliminating the need for batteries. This not only reduces the ecological impact of batteries and the use of raw materials but also results in more cost-effective solutions since battery replacements are no longer necessary. By harnessing the power of WPT, we can work towards a more sustainable and efficient future.

The upcoming WPT boot camp will focus on introducing wireless power transfer for wireless devices, which will aid in further advancing the digitalization of society and the economy. The boot camp will cover two different WPT technologies: one that operates in the near-field, already in use for wireless charging with its latest addition, near-field communication (NFC) charging, and the other technology is far-field wireless power transfer, which is gradually entering the market. Both technologies rely on different means of power transfer. The boot camp will provide details on both technologies, with experts from academia teaching the basics and principle design methodologies, while industry experts will offer insight into the different business cases and standards.

The WPT boot camp is designed for engineers who want to learn the fundamentals of WPT or are interested in using it for their applications, marketing and sales professionals who want to understand the basics of WPT technologies, and university students who wish to acquire basic knowledge of WPT. The course offers plenty of chances for audience participation and interaction.

Organizers: Jasmin Grosinger, Graz University of Technology; Nuno Carvalho, University of Aveiro

Speakers:

Near-field Wireless Power Technologies: Basics and Design Principles Jasmin Grosinger, *Graz University of Technology*

Near-field Wireless Power Technologies: Industry Perspective Jernej Izak, *Renesas Electronics Corp.* **Far-field Wireless Power Technologies: Basics and Design Principles** Nuno Carvalho, *University of Aveiro*

Far-field Wireless Power Technologies: Industry Perspective Jennifer Grenz, Ossia Inc.

WALTER E. WASHINGTON CONVENTION CENTER

2024 KF BOUT CAWP 08:00 - 17:20 Monday, 17 June 2024 Room: 207AB
2024 KF BUUT CANP 08:00 - 17:20 Monday, 17 June 2024 Room: 207AB

RF Boot Camp is designed to grow RFMW skills in an educational forum that is focused on the fundamentals of Microwave Theory and Techniques. We focus on teaching the fundamentals, terminology, and applications of RF and microwave design, simulation, and measurement – for those new to RFMW, those wishing to stay current with new technologies and applications or even for booth staff members who would like to understand a little more about microwave technology and terminology.

This course will provide an introduction to RF basics, targeting newcomers to the microwave industry. The intended audience includes technicians, new engineers, engineers who may be changing their career path, marketing and sales professionals seeking a better understanding of microwave technology, as well as current college students looking to learn more about the practical aspects of RF and Microwave technology. The format of the RF Boot Camp is similar to that of a workshop or short course, with multiple presenters from industry and academia presenting on a variety of topics including: RF/Microwave systems basics, network and spectrum analysis, simulation and matching network design modulation and signal analysis, antennas and radar basics.

Organizers: Joanne Mistler, Keysight Technologies; Larry Dunleavy, Modelithics and USF

Speakers:

The RF/Microwave Signal Chain, Network Characteristics, Analysis and Measurement Joanne Mistler, Keysight Technologies

Fundamentals of RF Simulation

Murthy Upmaka, Keysight Technologies

Impedance Matching Basics Larry Dunleavy, Modelithics and USF

Spectral Analysis and Receiver Technology Joanne Mistler, Keysight Technologies; Larry Dunleavy, Modelithics and USF Signal Generation, Modulation and Vector Signal Analysis Joanne Mistler, Keysight Technologies

Sub-THz/THz Link Design Josep Jornet, Northeastern University

THz Communications: from Vision to Reality Ngwe Thawdar, Air Force Research Laboratory Information Directorate

everythingRF

www.everythingRF.com

The Largest Database of RF & Microwave Products

300,000+ Products from 2000+ Manufacturers

Popular Product Categories

Amplifiers Multipliers Switches Bias Tees Phase Shifters Circulators Detectors RF Modules Mixers Receivers Diplexers Terminations Attenuators Down Converters VCOs Transistors Antennas Repeaters Test & Measurement Modulators Waveguide Components Connectors Baluns Transformers Crystal Oscillators RF Transceivers Couplers Cables Cellular Modules Power Dividers Attenuators Spectrum Analyzers

www.everythingRF.com

RFIC TECHNICAL SESSIONS 08:00 - 09:40

150AB	151AB	152AB
RMo1A: mm-Wave Transmitters and Receivers	RMo1B: Advanced Packaging Enabling	RMo1C: Unleashing RF Systems: From 5G to
Chair: Giuseppe Gramegna, IMEC	Heterogeneous Integration of SiGe HBT & III-V mmW ICs	Low-Power Sensing
Co-Chair: Magnus Wiklund, <i>BeammWave</i>	Chair: Frédéric Gianesello, STMicroelectronics Co-Chair: Harshpreet Bakshi, Texas Instruments	Chair: Pieriugi Nuzzo, University of Southern California Co-Chair: Yao-Hong Liu, <i>IMEC</i>
RMo1A-1: A 60-GHz Positive-Feedback-Based Transmitter Front-End with 22.8% PAEmax in 28-nm Bulk CMOS for Inter-Satellite Communications	RMo1B-1: A 24-30 GHz GaN Front-End MMIC with Coupled-Resonator based Transmit/Receive Switch for 5G Millimeter-Wave Applications	RMo1C-1: A 2.4GHz, -19 dBm Sensitivity RF Energy Harvesting CMOS Chip with 51% Peak Efficiency and 24dB Power Dynamic Range
K. Ding, D. Milosevic, V. Vidojkovic, Technische Universiteit Eindhoven; K. Khalaf, Pharrowtech; M. Bentum, P. Baltus, Technische Universiteit Eindhoven	D. Zeng, SCUT; H. Zhu, SCUT; Q. Cai, NJUPT; G. Shen, NJUPT; O. Gao, SCUT; W. Che, SCUT; Q. Xue, SCUT	JR. Yan, NYCU; YW. Huang, NYCU; WJ. Lai, Novatek Microelectronics; JH. Liao, Novatek Microelectronics; CC. Lin, Novatek Microelectronics; YT. Liao, NYCU
RMo1A-2: A Ka-Band 8-Element 4-Beam Transmitter Front End With Hybrid VGA and Symmetrical Transformer-Based Doherty PA	RMo1B-2: Heterogeneously-Integrated Gallium Nitride and Indium Phosphide Devices for Ka-Band Amplifiers	RMo1C-2: A 45nm RFSOI CMOS-Based 24.25– 29.5GHz 2×16-Channel Phased-Array Transceiver IC for 5G NR Applications
H. Gao, H. Lu, S. Wang, N. Li, G. Chen, C. Song, Zhejiang Univ.; YC. Kuan, NYCU; Q.J. Gu, Univ. of California, Davis; Z. Xu, Zhejiang Univ.	J.J. Kim, PseudolithIC; M.D. Hodge, PseudolithIC; M.R. Soler, PseudolithIC; F. Herrault, PseudolithIC; D.S. Green, PseudolithIC; J.F. Buckwalter, PseudolithIC	J. Lee, S. Baek, K. Kim, S. Park, H. Oh, T. Kim, J. Jung, J. Kim, S. Jeon, J.H. Park, W. Lee, J. Park, DH. Lee, S. Lee, J.H. Lee, J.H. Kim, Y. Kim, S. Park, B. Suh, S. Oh, D. Lee, J. Son, SG. Yang, Samsung
PMo14.3.4 32-Flement 25 8-to-30 8GHz Phased.	PMo18-3: A.G. Rand Glass Internoser Technology for	PMo10.3: A Fully Integrated Micronlastic Detection
Array CMOS Transmitter with Programable Piecewise Linear Temperature-Compensation Technique	the Integration of an Amplified Noise Source Based on SiGe BiCMOS 55-nm Technology	SoC with 0.1–3GHz Bandwidth and 35dB Dynamic Range for Narrow-Band Notch RF MEMS Sensor
Achieving ±0.002dB/°C Gain Variation Across -60-to-85°C	M. Alawar, IEMN (UMR 8520); V. Fiorese, STMicroelectropics: S. Lépilliet, IEMN (UMP 8520);	System
D. Li, W. Deng, Z. Guo, H. Jia, X. Li, X. Nie, R. Qiu, B. Chi, Tsinghua Univ.	D. Gloria, STMicroelectronics; G. Ducournau, E. Dubois, IEMN (UMR 8520)	K. Eom, J. Kang, H. Jung, Korea Univ.; C. Cha, KETI; HM. Lee, Korea Univ.
6 RMo1A-4: A Blocker-Tolerant mm-Wave MIMO Receiver with Spatial Notch Filtering Using Non-Reciprocal Phase-Shifters for 5G Applications	RMo1B-4: A 22FDX Wi-Fi PA Demonstrating a New LDMOS Device with 10V Breakdown Achieving Output Power of 29.5dBm at 40% PAE	RMo1C-4: A 21-27-GHz Frequency Quadrupler in 0.13µm SiGe BiCMOS with 0-dBm POUT and 40-dBc HRR for Wideband 5G Applications
S. Mohin, <i>MIT</i> ; S. Araei, <i>MIT</i> ; M. Barzgari, <i>MIT</i> ; N. Reiskarimian, <i>MIT</i>	A. Balasubramaniyan, X. Hui, A. Bellaouar, M. Meza Campos, A. Bharadwaj, E. Veeramani, S. Syed, <i>GLOBALFOUNDRIE</i> S	C. Ozdag, IBM T.J. Watson Research Center; A. Paidimarri, M. Yoshiyama, Y. Yamaguchi, Y. Tojo, Fujikura; B. Sadhu, IBM T.J. Watson Research Center
;		
 RMo1A-5: A 56–65GHz Highly-Integrated FMCW Radar Transceiver with 7.8dB NF and 8GHz Chirp-Bandwidth in 65-nm CMOS 	RMo1B-5: A Reconfigurable Compact Multiband RF Bi-Directional Coupler for Sub-6GHz RF Front-Ends in RF SOI CMOS Switch Technology	RMo1C-5: Design of a Dual-Mode Coil-Reuse Data Acquisition System for Miniaturized Wirelessly Powered Biopotential Sensing Nodes
J. Chen, Zhejiang Univ.; S. Wang, Zhejiang Univ.; J. Liu, Zhejiang Univ.; Q. Yang, Zhejiang Univ.; Q. Li, Zhejiang Univ.; H. Nie, Zhejiang Univ.; Q.J. Gu, Univ. of California, Davis; C. Song, Zhejiang Univ.; N. Yan, Fudan Univ.; Z. Xu, Zhejiang Univ.	TL. Hsu, Technische Univ. München; A. Hagelauer, Technische Univ. München; V. Solomko, Infineon Technologies	H. Jafari Sharemi, Univ. of California, Los Angeles; A. Babakhani, Univ. of California, Los Angeles

RFIC TECHNICAL SESSIONS 10:10 – 11:50 Monday, 17 June 2024

150AB	151AB	152AB		
RMo2A: mm-Wave Transceivers and RF Techniques	RMo2B: High-Performance Multi-Mode, Multi-Core Oscillators	RMo2C: Interference Resilient and Energy Efficient Transmitters and Receivers		
Chair: Abhishek Agrawal, Intel Co-Chair: Andrea Bevilacqua, Università di Padova	Chair: Andrea Mazzanti, <i>Università di Pavia</i> Co-Chair: Bichoy Bahr, <i>Texas Instruments</i>	Chair: Chun-Huat Heng, National University of Singapore Co-Chair: Justin Wu, AmLogic		
RMo2A-1: A Compact Ka-Band Bi-Directional PA-LNA with 17.4-dBm Psat Using Three-Stack Power Amplifier in 28-nm CMOS	RMo2B-1: An Octave Tuning Range Quad-Core VCO Using a Compact Quad-Mode Transformer-Based Inductor	RMo2C-1: A Sub-6GHz Wideband Transmitter with LO Harmonic Rejection RF Front-Ends Using Frequency- Adaptive Calibration	10:10	
J. Hwang, Yonsei Univ.; BW. Min, Yonsei Univ.	H. Kim, Korea Univ.; S. Kim, Korea Univ.; S. Jeon, Korea Univ.	H. Bai, Peking Univ.; D. Wang, Peking Univ.; K. Gao, Peking Univ.; J. He, Peking Univ.; J. Zhou, Peking Univ.; J. Liu, Peking Univ.; H. Liao, Peking Univ.		
RMo2A-2: A Reconfigurable Ultra Compact Bi-Directional Amplifier with a Build-in-Self Notch Filter for K/Ka-Band Satellite Communication	RMo2B-2: An 18.5-to-36.5GHz 206.8dBc/Hz FoMT Quad-Core Triple-Mode VCO with Automatic-Mode- Tracking Output Buffers	RMo2C-2: An 11.8mW 0.4-to-2.6GHz Blocker-Tolerant Receiver with LO Duty-Cycle Compensation and High-Q Selectivity Achieving +15.4/19.2dBm OB-IIP3 at 10/8MHz Offset	10:30	
J. Zhang, Tsinghua Univ.; M. Zhai, Tsinghua Univ.; D. Wang, Tsinghua Univ.; X. Yi, Tsinghua Univ.; W. Zhu, BIT; Y. Wang, Tsinghua Univ.	Z. Lin, Tsinghua Univ.; H. Jia, Tsinghua Univ.; W. Deng, Tsinghua Univ.; B. Chi, Tsinghua Univ.	R. Wu, Tianjin Univ.; Y. Wang, Tianjin Univ.; R. Hong, Tianjin Univ.; K. Xie, Tianjin Univ.; K. Wang, Tianjin Univ.		
RMo2A-3: Fully Integrated SiGe HBT BiCMOS Transmit-Receive Front-End IC for 5G mmW Radio with a Reconfigurable Built-In Diode RF Switch	RMo2B-3: A 52.3-to-67.3GHz 35.8-kHz-Resolution Triple-Push DCO Exploiting Source-Combining Technique for Third-Harmonic Enhancement Achieving	RMo2C-3: A 2.8–4.3GHz Simultaneous Dual-Carrier Transformer-Coupled Passive Mixer-First Receiver Front-End Supporting Blocker Suppression	10:50	
I. Han, Ajou Univ.; H. Lee, Ajou Univ.; I. Ju, Ajou Univ.	196.4dBc/Hz Peak FoMT at 10MHz Offset Q. Jiang, University of Macau; J. Yin, University of Macau; Q. Pan, SUSTech; R.P. Martins, University of Macau; Mak, University of Macau	 J.C. Ye, Cornell Univ.; A. Antón, Cornell Univ.; R.H. Huang, Cornell Univ.; S. Sadeghi, Cornell Univ.; A.C. Molnar, Cornell Univ. 		
RMo2A-4: Non-Coherent TX-RX Chipsets for J-Band Communication in 16-nm FinFET CMOS	RMo2B-4: An 11GHz 8-Core Series Resonance CMOS VCO with Scalable Ring-Coupling Scheme Achieving	RMo2C-4: A 2.3nJ/b 32-APSK Polar Phase-Tracking Receiver with Two-Point Injection Technique	11:10	
B. Gungor, KU Leuven; P. Reynaert, KU Leuven	S. Zhang, Tsinghua Univ.; W. Deng, Tsinghua Univ.; H. Jia, Tsinghua Univ.; B. Chi, Tsinghua Univ.; H. Jia,	X. Ji, Tsinghua Univ.; J. Zhao, Tsinghua Univ.; W. Rhee, Tsinghua Univ.; Z. Wang, Tsinghua Univ.		
		RMo2C-5: A 0.77mW 1.84nJ/Bit Phase Noise Canceling Receiver for QAM and OFDM and Cellular loT		
RMo2A-5: A Δ-Modulated Linear-in-dB Attenuator for On-Chip Power Detection with 0.12dB Resolution in RF SOI CMOS Switch Technology	RMo2B-5: A K-Band Voltage-Controlled Oscillator with Gate-Drain Phase Shift Achieving 110kHz 1/f ³ Corner	TJ. Odelberg, Univ. of Michigan; D.D. Wentzloff, Univ. of Michigan	11:30	
TL. Hsu, Technische Univ. München; V. Solomko, Infineon Technologies; A. Hagelauer, Technische Univ. München				
			11:50	

RFIC TECHNICAL SESSIONS 13:30 - 15:10

:10 Monday, 17 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

	150AB	151AB	152AB
	RMo3A: mm-Wave Power Amplifiers	RMo3B: RF and mm-Wave Frequency	RMo3C: Wideband Reconfigurable
	Chair: Jane Gu, University of California, Davis Co-Chair: Gernot Hueber, United Micro Technology	Chair: Fa Foster Dai, Auburn University Co-Chair: Salvatore Finocchiaro, Qorvo	Chair: Emanuel Cohen, Technion Co-Chair: Hao Gao, Technische Universiteit Eindhoven
13:30	RMo3A-1: A Class-J/F 60GHz Power Amplifier with 42.3% Power Added Efficiency in FDS0I CMOS M. Cui, Technische Universität Dresden; J. Wagner,	RMo3B-1: A 0.2–25GHz Inductorless Complementary Pseudo-Push-Push Frequency Doubler C. Song, CUHK-Shenzhen; C. Yu, CUHK-Shenzhen;	RMo3C-1: A 16-Channel W-Band Phased-Array Receiver with a 8-Bit Octant Selector and Reflection- Type Phase Shifter of 0.23°/0.21-dB RMS Phase and Gain Error for ±30° Scapping Angle
1:	Technische Universität Dresden; F. Ellinger, Technische Universität Dresden	L. Wu, CUHK-Shenzhen	X. Luo, CAEP; Y. Rao, CAEP; X. Cheng, CAEP; B. Cheng, CAEP; H. Yang, CAEP; R. Chen, CAEP; Y. Yu, CAEP; J. Han, CAEP; C. Han, UESTC; L. Zhang, CAEP; Y. Tang, CAEP; X. Deng, CAEP; H. Gao, Technische Universiteit Eindhoven
:50	RMo3A-2: A 25–40GHz Three-Way Power Amplifier with No Load Modulation Achieving Broadband Deep Power Back-Off Efficiency Enhancement	RMo3B-2: A Compact D-Band Multiply-by-9 Frequency Multiplier with Inductor-Less Active Balun in 16nm p-FinFET Technology	RMo3C-2: A K-Band 4-Element 8-Beam Phased-Array Receiver with Hybrid Vector Interpolation and Impedance-Adapted Multibeam Combining Techniques for Satellite Communications
_	E. Liu, ETH Zürich; H. Zhou, Chalmers Univ. of Technology; C. Fager, Chalmers Univ. of Technology; H. Wang, ETH Zürich	R. Chen, Univ. of California, Los Angeles; HY. Chien, Univ. of California, Los Angeles; MC.F. Chang, Univ. of California, Los Angeles	H. Lu, N. Li, H. Gao, B. Yang, X. He, S. Wang, Y. Liu, G. Chen, Zhejiang Univ.; YC. Kuan, NYCU; X. Qi, Zhejiang Univ.; C. Song, Zhejiang Univ.; Q.J. Gu, Univ. of California, Davis; Z. Xu, Zhejiang Univ.
4:10	RMo3A-3: A 22–44GHz 28nm FD-SOI CMOS 5G Doherty Power Amplifier with Wideband PAE6dBPB0 Enhancement and 3:1 VSWR Resiliency	RMo3B-3: A 17.4–26.4-GHz Dual-Injection Injection-Locked Frequency Tripler Featuring Low Power Consumption and High Harmonic Rejection	RMo3C-3: A Frequency Reconfigurable Phased-Array Front-End with Enhanced Image-Rejection and High-Resolution LO Phase Shifter for 5G FR2 n258/ n260 (n264 Bands
1/	G. Diverrez, IMS (UMR 5218); E. Kerherve, IMS (UMR 5218); M. De Matos, IMS (UMR 5218); A. Cathelin, STMicroelectronics	Q. Zeng, UESTC; J. Zhang, UESTC; Y. Yu, UESTC; H. Liu, UESTC; Y. Wu, UESTC; C. Zhao, UESTC; K. Kang, UESTC	Q. Chen, J. Lu, X. Jiang, X. Yang, Y. Liang, Y. Hu, Y. Wang, J. Liu, L. Lu, Southeast Univ.; D. Cheng, Purple Mountain Laboratories; J. Feng, Southeast Univ.; L. Luo, L. He, Purple Mountain Laboratories; X. Wu, Southeast Univ.; L. Li, Southeast Univ.
1:30	RMo3A-4: A 25–31GHz Compact True Power Detector with >33dB Dynamic Range in 40nm Bulk CMOS	RMo3B-4: A 278–348GHz 6th Harmonic Injection Locking Frequency Multiplier Based on 3rd Harmonic Injection Locking Oscillator in 130nm SiGe Process	RMo3C-4: A 10:1 Bandwidth 2.5–25GHz Multi- Standard High-Linearity 6-Bit Phased-Array Receiver Front-End with Quad-Pole I/Q Network and 2.7° RMS
1	Fudan Univ.; Z. Xu, Zhejiang Univ.; P. Jia, Starway Communication; N. Yan, Fudan Univ.	Z. Yan, Southeast Univ.; J. Chen, Southeast Univ.; Z. Chen, Southeast Univ.; Z. Li, Southeast Univ.; R. Zhang, Southeast Univ.; R. Zhou, Southeast Univ.; P. Zhou, Southeast Univ.; W. Hong, Southeast Univ.	Phase Error T. Liang, Univ. of California, San Diego; Z. Hu, Univ. of California, San Diego; O. Hassan, Univ. of California, San Diego; G.M. Rebeiz, Univ. of California, San Diego
4:50	RMo3A-5: A Compact Dual-Mode CMOS Power Amplifier Covering both Sub-6GHz and mm-Wave Bands for 5G NR	RMo3B-5: A 192–229GHz Frequency Tripler with 4.4dBm Output Power Using Slotline-Based Drain Harmonic Shaping Technique in 40nm CMOS	RMo3C-5: A 26.5–35GHz High Linearity VGA with an RMS Phase Error of 0.9°–2.8° Utilizing a Novel Hybrid Coupling Technique in 45RFS0I
	J. Zhang, SCUT; J. Chen, Univ. College Dublin; T. Xu, SCUT; P. Qin, SCUT; X. Yi, SCUT; L. Wu, CUHK- Shenzhen; H. Zhu, SCUT; W. Che, SCUT; Q. Xue, SCUT	Y. Ding, Southeast Univ.; Y. Shen, Southeast Univ.; Z. Lin, Southeast Univ.; Z. Wei, Southeast Univ.; Y. Qian, Southeast Univ.; S. Hu, Southeast Univ.	A. Afifi, Univ. of California, San Diego; G.M. Rebeiz, Univ. of California, San Diego
15:10			

RFIC TECHNICAL SESSIONS 15:40 - 17:00 Monday, 17 June 2024

150AB	151AB	152AB	
RMo4A: Silicon-Based Power Amplifiers for	RMo4B: High Performance RF and mm-Wave	RMo4C: Wireline and Localization Systems	
Chair: Alexandre Giry, CEA-LETI Co-Chair: Hyun-Chul Park, Samsung	Chair: Andreia Cathelin, STMicroelectronics Co-Chair: Xiang Gao, Zhejiang University	Chair: Ahmed Elkholy, <i>Broadcom</i> Co-Chair: Sajjad Moazeni, <i>University of Washington</i>	
RMo4A-1: A D-Band Complex Neutralization Cascode Power Amplifier with A Source-Gate Driven Cascode for Enhanced Bandwidth and Efficiency M. Eleraky, ETH Zürich; H. Wang, ETH Zürich	RMo4B-1: A 45-fsrms-Jitter, 144-to-162-GHz D-Band Frequency Synthesizer Using a Subsampling PLL and a Harmonic-Boosting Frequency Multiplier S. Jung, KAIST; J. Kim, KAIST; J. Bang, KAIST; J. Choi, Seoul National Univ.	RMo4C-1: Transimpedance Amplifiers with 95GHz Transimpedance Bandwidth and 1.5% THD for 800G Coherent Optical Communications M.H. Mahmud, Univ. of California, San Diego; H. Al-Rubaye, Broadcom; G.M. Rebeiz, Univ. of California, San Diego	
RMo4A-2: A D-Band Power Amplifier with Optimized Common-Mode Behaviour Achieving 32Gb/s in 22-nm FD-SOI	RMo4B-2: A 37.2-fs, -254.6-dB FoM, 47.9-to-56.4GHz PLL Using Tightly Coupled Dual-Core VCO with Implicit 4th Harmonic Extraction Technique	RMo4C-2: A 4–26Gbaud Configurable Multi-Mode Non-Uniform EOM with Improved Twin PI for High-Speed Wireline Communication Achieving 3-µs EW/EH Evaluation and 0.99-R ² Accuracy	
G. Venturini, <i>KU Leuven</i> ; P. Reynaert, <i>KU Leuven</i>	Q. Wu, Tsinghua Univ.; W. Deng, Tsinghua Univ.; M. Xiong, Tsinghua Univ.; H. Jia, Tsinghua Univ.; R. Wan, Tsinghua Univ.; H. Liu, Tsinghua Univ.; B. Chi, Tsinghua Univ.	S. Liu, Xidian Univ.; Z. Dong, Xidian Univ.; M. Wang, Xidian Univ.; X. Zhao, Xidian Univ.; C. Han, Xidian Univ.; X. Su, Xidian Univ.; Z. Zhu, Xidian Univ.	
RMo4A-3: Phased-Array-Compatible Area-Efficient D-Band Power Amplifiers in 45 RF SOI Based on Cascade Stacking	RMo4B-3: A 74GHz-80GHz 1.2GHz/µs-Slope 20.9mW FMCW Synthesizer with TDC-Gain- Independent Loop-Bandwidth Employing a TDC-Offset-Free Type-II Digital PLL and a Linearized	RMo4C-3: A 10ns Delay Range 1.5GHz BW True-Time- Delay Array-Based Passive-Active Signal Combiner with Negative-Cap Stabilized RAMP for Fast Precise Localization	
A. Davidson, Columbia Univ.; H. Krishnaswamy, Columbia Univ.	Hybrid-Tuning DCO Y. Liu, HKUST; Z. Jing, HKUST; Z. Liu, HKUST; C.C. Yip, HKUST; Z. Zong, HKUST(GZ); H.C. Luong, HKUST	Q. Xu, Washington State Univ.; CC. Lin, Washington State Univ.; A. Wadaskar, Univ. of California, Los Angeles; H. Hu, Washington State Univ.; D. Cabric, Univ. of California, Los Angeles; S. Gupta, Washington State Univ.	
RMo4A-4: A 15.7-dBm 164–270GHz Power Amplifier with Asymmetric Slotline-Based Series-Parallel Combiner in 130-nm SiGe BiCMOS Technology	RMo4B-4: A 4.25GHz-8.45GHz 67%-Chirp-Fractional- Bandwidth -121.5dBc/, Hz-PN@1MHz 88fs-Jitter FMCW Synthesizer with Bandwidth-Boosting and Phase-Noise-Cancellation Techniques	RMo4C-4: An Electro-Optical Synthesizer to Generate Random Chirp Rates for Secure FMCW LIDAR Applications	
G. Park, Korea Univ.; H. Kim, Korea Univ.; S. Jeon, Korea Univ.	Y. Liu, HKUST; Z. Jing, HKUST; Z. Liu, HKUST; W. Yang, HKUST; C.C. Yip, HKUST; L. Wu, CUHK-Shenzhen; H.C. Luong, HKUST	M. Rezaei, Univ. of Washington; L. Hussein, Univ. of Washington; A. Dee, Univ. of Washington; S. Moazeni, Univ. of Washington	
	RMo4B-5: A 0.2-to-39.2GHz 66.2-fs Jitter and -71.3dBc Spur Sub-Sampling PLL Using DAC-Based Constant Control Voltage Compensator and Quad-Mode 2nd Harmonic Filtering Oscillator		
	W. Chen, UESTC; Y. Shu, UESTC; X. Luo, UESTC		

MONDAY WORKSHOPS

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Monday, 17 June 2024

WORKSHOP TITLI

WORKSHOP ABSTRACT

	WURNSHUP IIILE	WORKSHOF ADSTRACT
WMA	Acoustic Wave Resonators and Filters Based on Advanced Functional Materials Sponsor/s: IMS Organizers: Christopher Nordquist, Sandia National Laboratories; Jordi Verdú, Universitat Autònoma de Barcelona ROOM: 144AB 08:00 - 17:20	The complexity of the requirements in advanced 5G and forthcoming scenarios has a direct impact on the design of acoustic wave filters. Latest developments have pushed acoustic technology to an unprecedented situation mostly due to the developments in advanced functional materials; however, this entails at the same time, new challenges in relation to design and synthesis methodologies, electrical characterization and non-linear behavior and modeling. New scenarios open at the same time an opportunity window where new applications can be faced using acoustic wave technologies due to the outstanding performance and reduced size compared with conventional electromagnetic solutions. The workshop is divided in three differentiated blocks. The first block is focused on design and synthesis methodologies. The objective is to show how the amazing properties of new functional materials may help to overcome existing limitations, mainly related to the achievable bandwidth of the filter. In the second block, the focus is put on modeling and linear/non-linear characterization. New functional materials may help to overcome existing limitations, mainly related to a higher non-linear behavior. All this phenomenological behavior can be used for the development of more precise linear and non-linear models. The third block is focused on new modes of operation and AW resonator configurations taking advantage of new material properties such as heterostructures, new doped materials, or other configurations as the periodically polarized piezoelectric P3F. The final block is focused on transversal markets to explore new opportunities where acoustic wave technologies may have a key role in future scenarios (UWB, Sensors, and/or other applications). With the objective of giving the widest view on the topic, half of the presentations are given by international recognized research groups in academia, while the other half are given by the major global industrial players.
WMB	Recent Advances in High- Voltage RF Switches Sponsor/s: IMS Organizers: Amelie Hagelauer, Technische Universität München; Valentyn Solomko, Infineon Technolo- gies; Xu Zhu, Menlo Microsystems ROOM: 143ABC 08:00 - 11:50	High-voltage, linear RF switches are extensively demanded in a wide variety of applications, ranging from high-volume, cost-efficient cellular handsets to performance-centric and high-reliability automated test and measurements, RF infrastructure, military, and medical systems. Antenna tuning techniques utilized in modern cellular mobile devices have been the main driver for rapid improvement of commercial solid-state CMOS-based high-voltage switches. A need for more radical RF performance improvement in other demanding applications calls for innovative solutions based on RF-MEMS and disruptive PCM switch technologies. In this workshop experts from industry and academia will report on recent advances in MOSFET-based, RF-MEMS and PCM-switches for RF communication and test platforms. A panel session will conclude the event, where the speakers will debate on the insights and outlooks for the trending technology candidates for switchable RF devices in cellular RF front-ends, automated test and measurement systems, industrial/military radios and others.
WMC	Radio Spectrum for Microwave Practitioners Sponsor/s: IMS Organizers: Andrew Clegg, Google; Charles Baylis, <i>Baylor University</i> ROOM: 144C 08:00 - 17:20	This workshop will discuss radio spectrum usage from the view of a microwave practitioner. The basics of wireless spectrum allocation and regulation will be discussed. Presentations will describe the spectrum needs and challenges for defense and the commercial wireless industry, as well as how the test and measurement industry will be challenged. Core microwave technology innovations enabling future innovative spectrum usage will be discussed, including mm-wave devices and reconfigurable circuitry. Finally, a discussion of workforce development for spectrum science and engineering will conclude the presentations. The workshop will include an opening discussion and audience poll for topics of interest, as well as a closing panel session with the speakers for additional participant interaction.
WMD	Recent Advances in Wideband and Efficient Doherty PAs for 5G and 6G Wireless Communica- tions Sponsor/s: IMS Organizers: Bumman Kim, POSTECH; Kamal K. Samanta, AMWT ROOM: 145AB 13:30 - 17:20	The rising demand for high data traffic, speed, and resolution requires new-generation (5G and B5G) power amplifiers (PAs) to operate at higher frequency bands, and deliver high linear power with wide bandwidth and high efficiency at high PAPR, and these PAs are among the most critical components for the next-generation mobile and backhaul systems. Load-modulated Doherty power amplifiers (DPAs) are highly regarded as suitable candidates, providing high efficiency and supporting higher-order modulation. However, conventional DPA suffers from restricted bandwidth, maintaining efficiency with BW, and increased sensitivity to load mismatch. This timely workshop will feature a wide range of presentations highlighting the recent advances and state-of-the-art developments in Doherty-based PA circuit design theory, methodology, and practical circuit and system implementation techniques for overcoming the above constraints. This will cover analog and hybrid beamforming and massive MIMO applications for sub-6GHz 5G to mm-wave and 6G applications, including those for handsets and infrastructures. This workshop will showcase advanced topologies, including a novel active load-modulated PA architecture called the circulator load-modulated amplifier; advanced sequential version and the voltage-combining approach; and novel analog/digital co-design, reducing undesirable memory effects and extending bandwidths with high efficiency. Further, the latest load-insensitive load-modulation PAs including quasi-balanced Doherty PA and load-modulated balanced and double balanced amplifiers, which provide inherent isolation from the antenna, will be presented. Finally, the workshop will conclude with the latest important trends, possible future directions, and experimental results based on monolithic and hybrid implementation and will compare the performance of novel DPAs with circuit/device technologies in terms of BW, ACLP/linearity, and efficiency at different backoffs (6 to 12dB) for fulfilling the challenging high-performance and lo
WME	Latest Trends in Cost-Effective IC Integration, IPDs and Interposer Technologies for Sub-6GHz to Sub-THz Wireless Applications Sponsor/s: IMS Organizers: Huei Wang, National Taiwan University; Kamal K. Samanta, AMWT ROOM: 145AB 08:00 - 11:50	The realization of advanced front-end modules (FEM) for mobile applications, whether below 6GHz and definitely at mm-wave, and their packaging, pose daunting design challenges to fit significant electrical functionality within a relatively small space while meeting or exceeding electrical, mechanical, thermal, and reliability requirements for both the UE and BS use-cases at a low cost. As a result, it will be more important to solve signal integrity, reduce insertion losses imposed by various interconnects and packaging techniques at the chip, module, and board levels with co-engineering across disciplines, and realize an integrated module cost-effectively. This workshop is organized to address current and future design and manufacturing techniques by bringing together subject-matter experts from the IEEE Electronic Packaging Society (EPS) and the MTT-S communities. Presentations will cover the state-of-the-art in advanced, cost-effective multichip module integration, integrated passive devices (IPD) and interposer technologies for circuit and system design for signal diversity, and beam-forming approaches that would leverage emerging next-generation wireless communications, including handset modules, economically. In particular, the workshop will highlight the latest advances and state-of-the-art developments in interposer technologies, including high-resistive Si, glass, and organic substrates for 2.5D/3D IC integration through vias (TSV/TGV), high-Q IPDs, antennas in packages (AiP), and wafer-scale packaging, covering sub-6GHz 5G to 300GHz 6G applications. The workshop will discuss the relative merits and de-merits of existing approaches in terms of losses, Q, isolation, non-linearity, and, most importantly, cost, and it will provide possible solutions with future directions. This will present advanced HR Si (with buffer, passivation, and isolation layers) and glass-based high-Q IPDs integrating filters, matching networks, and integration of antennas optimizing radiation pattern and system performance; RF-op

24

MONDAY WORKSHOPS

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Monday, 17 June 2024

WORKSHOP TITLE WORKSHOP ABSTRACT **On-Wafer mm-Wave Load-Pull for** Microelectronics operating in the mm-wave frequency regime have gained considerable attention for numerous applications including beyond-5G communications, satellite communications, and G-band radar for humidity and cloud remote sensing. A **Beyond-5G Microelectronics** central component in the mm-wave integrated circuit development is precise on-wafer characterization of the next-generation Characterization transistors for device characterization and model extraction/validation. On-wafer measurements at mm-wave frequencies pose considerable challenges, and these difficulties are compounded when large-signal measurements are required for device Sponsor/s: IMS; ARFTG optimization and modeling. This workshop incorporates a diverse set of speakers from around the world who are international experts in the field of on-wafer mm-wave calibration and small- and large-signal measurements. The morning session of this Organizers: Jerome Cheron, NIST; workshop will provide a deep background on the need for, challenges of, and calibration requirements for on-wafer mm-wave Nicholas Miller, Michigan State large-signal measurements. Our afternoon session will present world-class research from both academia and industry on on-wafer load-pull measurements at mm-wave frequencies. This proposed workshop will enable an inclusive, international University **ROOM: 146A** audience and will welcome open discussions on the technical aspects of the presentations. 08:00 - 17:20 **New Design and Testing Approaches** This interactive half-day workshop of 4 tutorials includes 5 speakers from both industry and academia, who have been involved in the development of new approaches for the design and testing of power amplifiers, phased arrays and antenna-in-package for Optimizing Efficiency and modules. The tutorials present techniques for evaluating and optimizing efficiency and heat dissipation in RF devices and **Thermal Performance in Phased** front-ends, and are a combination of recent research, as well as field-proven methods that are already available in the industry products, such as thermoreflectance solutions and over-the-air (OTA) thermal imaging for 5G phased array front-ends **Arrays and mm-Wave Front-Ends** incorporating ICs and antenna-in-package modules. In addition to the conventional Q&A time made available to attendees Sponsor/s: IMS; ARFTG during and after each tutorial, attendees will be encouraged at the beginning of the workshop to present challenges that they are interested in addressing, so as to allow the tutorial speakers to consider these in their tutorials. Organizers: Mo Shakouri, Microsanj; Oren Eliezer, Samsung; Sidina Wane, eV-Technologies **ROOM: 146B** 13:30 - 17:20 **Efficient and Linear Power Amplifier** The system performance of wireless transmitters depends heavily on the behavior of RF power amplifiers (PA). To satisfy the increasing demand for higher data rates, modern communications standards adopt ever higher modulation orders at increasing **Design for Wideband Signals: Still** modulation bandwidths. Additionally, radar systems are facing increasingly more complex signals while dual functionality an Art? remains a desired goal for future systems. As a result, PA designers are faced with the intractable goal of providing PAs with simultaneously high linearity and power at higher carrier frequencies with wide instantaneous bandwidths in a world where power Sponsor/s: IMS; ARFTG conservation is often a primary objective. Traditional PA design starts typically from (pulsed) continuous waveform (CW) measurements combined with load-pull. Design techniques, like the Cripps method, come to the rescue of the designer to Organizers: Marc Vanden Bossche, reduce the amount of characterization. Usually, the PA is characterized under the desired modulation conditions only after the design and fabrication, often with degraded performance from the predictions. This requires then one or more expensive National Instruments; Zoya Popović, University of Colorado Boulder redesigns. With the increased demand for active phased arrays, this problem is only magnified as amplifiers interact with each **ROOM: 146B** other through the antenna coupling, which affects both efficiency and linearity. This workshop showcases the state-of-the-art of practical design methodologies that anticipate the use of the amplifiers under realistic wideband modulation conditions. The 08:00 - 11:50 goal of these methodologies is to reduce the number of fabrication iterations by characterizing the transistor and designing the PA in a realistic operating environment at an early stage of the design process. Understanding instrument noise and building stable, ultra-low-noise receivers have critical importance achieving high-quality Low Noise Techniques accurate RF receivers that are used in a very broad field including 5G systems to weather/meteorological radars/sounders to Sponsor/s: IMS communication systems. This workshop will fill an important gap by discussing noise parameter measurement techniques at room temperature and cryogenic environments, ultra-low-noise technologies and amplifiers in InGaAs mHEMTs and GaN HEMTs, Organizers: Mehmet Ogut, JPL; Shirin low noise amplifiers and receivers for radiometric measurements and recent advanced state-of-the-art low-noise technology and Montazeri, Google their applications. **ROOM: 146C** 13:30 - 17:20 **Chipletization, Heterogeneous** In this workshop, we will deeply explore high-frequency technologies, emphasizing the synergy between chipletization, heterogeneous integration, and advanced interconnect solutions for mm-wave and sub-THz applications. We will explore the Integration, and Advanced need for innovative approaches to heterogeneous integration (HI), which involves integrating multiple dies and chiplets (eg **Packaging Solutions for mm-Wave** CMOS, InP, and SiGe BiCMOS chips) on advanced packaging, to push the boundaries of high-frequency systems into new territories. The workshop will include insightful presentations from both academia and industry, highlighting the latest trends and and Sub-THz Applications future technologies in chipletization, HI, and advanced packaging. These talks will merge theoretical research with practical applications, offering a comprehensive view of the field's progression. Additionally, we will discuss the necessity for cutting-edge interconnects and transitions, essential for ultra-broadband, low-loss signal transmission in the high-frequency domains. Sponsor/s: IMS Organizers: Atom Watanabe, IBM T.J. Through discussions and case studies, we will show how these technologies are crucial for the practical realization of chiplet and Watson Research Center; Mehmet HI-based mm-wave and THz systems. Kaynak, Texas Instruments **ROOM: 146C** 08:00 - 11:50 Ultra-low-power devices which are pervasive in the IoT world depend on energy autonomy to perform seamlessly their sensing **Enabling Long Life of Zero-Power IoT** and communication tasks. The wireless provision of power is an appropriate solution for IoT sensors, as demonstrated by the **Devices Through Wireless Power** talks of this workshop, given by experts from both academia and industry from all continents. The workshop focuses on different Transmission areas, such as the miniaturization of the IoT node, the exploitation of additive manufacturing for eco-friendly solutions, the need for circuital/electromagnetic strategies for accurate low-power transceiver design, system-on-chip solutions with machine-learn-Sponsor/s: IMS ing assisted sensing capabilities. Moreover, both near- and far-field applications (up to mm-Wave) are considered with special emphasis on complex electromagnetic environments, from the viewpoint of the receiver (rectenna) and the transmitter (energy Organizers: Diego Masotti, Università di source), with recent solutions of both single or multiple rectenna combinations and advanced transmitting stations. This Bologna; Simon Hemour, IMS (UMR workshop is part of the initiative "Future Directions Days on WPT" sponsored by the MTT-S Technical Committee-25 (Wireless 5218) Power Transfer and Energy Conversion Committee) ROOM: 204ABC 08:00 - 17:20

MONDAY WORKSHOPS

WALTER E. WASHINGTON CONVENTION CENTER

08:00 - 17:20 | Monday, 17 June 2024

WORKSHOP TITLE

WORKSHOP ABSTRACT

WML	Quantum Circuits, Methods, and Algorithms in Microwave Engineer- ing Sponsor/s: IMS Organizers: Michael Haider, Technische Universität München; Thomas E. Roth, Purdue University; Vladimir Okhmatovski, University of Manitoba; Zhen Peng, University of Illinois at Urbana-Champaign ROOM: 147AB 08:00 - 17:20	The recent demonstration of quantum supremacy with superconducting quantum computers has triggered researchers all over the world to work towards improved superconducting microwave devices, as well as novel quantum methods and algorithms. For low temperatures and weak microwave signals, as is the case in the readout of superconducting qubits, the quantum nature of the electromagnetic field becomes apparent. Hence, the design, optimization, and scaling of superconducting microwave components need to be performed on a completely new theoretical basis, given by the framework of circuit quantum electrodynamics. For microwave engineers, this signifies a transfer of knowledge from classical electromagnetics to the quantum realm. More or less common microwave components such as mixers, isolators, parametric amplifiers, and circulators are key for the realization of superconducting quantum computers. They can be modeled using quantum theory or hybrid semi-classical quantum approaches, which is particularly important if quantum effects are fundamental to the device's operation. To exploit the full potential of general-purpose quantum computers based on superconducting qubits, which will enable breakthrough applications in the mid and long-term. Further technological advances in quantum error correction and qubit readout are necessary. Fueled by the remarkable progress in quantum hardware, which has defined a new noisy intermediate-scale quantum computing era, innovative quantum algorithms have been proposed. Particularly in electromagnetics, specialized quantum algorithms have the potential of significant speedups against classical computing strategies, especially when it comes to NP-hard optimization problems. Quantum algorithms also show great potential for the solution of integral equations, inverse scattering problems, and the prediction of radiation patterns. However, at the current stage, inevitable noise and limited qubit coherence times are prohibitive for most methods to show a real quantum advantage yet. Curre
MMM	Space-Borne Microwave and THz Instruments for Earth/Planetary Science Applications Sponsor/s: IMS Organizers: Kavita Goverdhanam, U.S. Army CCDC C5ISR Center; Rainee N. Simons, NASA Glenn ROOM: 149AB 13:30 - 17:20	Over six decades of exploration of our solar system by robotic spacecraft has not only been one of the greatest adventures in history but has also transformed our understanding of the universe. Every mission has enabled stunning scientific discoveries that altered our knowledge of the universe. The breadth and depth of the discoveries from these robotic missions would not have been possible without the parallel development of broad range of science instruments that operate over wide range of wavelengths across the electromagnetic spectrum. These instruments provided the data to address key science questions and test scientific hypotheses. The focus of this workshop is the development of space-borne microwave and THz instruments for exploring our Earth and the numerous objects orbiting the Sun in our solar system such as the planets and moons. At present there are significant technological needs for improving existing instruments and adapting completely new concepts. Practically all instruments can benefit from technology developments that can reduce their mass and power consumption and improve data communications capability. Additionally, increased sensitivity and measurement accuracy are desired attributes along with survivability under extreme temperature/ pressure in the ionizing radiation environment of space. Furthermore, autonomy is important given the enormous planetary distances that are involved. Accordingly, the workshop includes presentations from space agencies and organizations across the globe highlighting their instrument development successes and the missions that were enabled. The workshop commences with an overview talk that presents the state of THz instrumentation development, design, and implementation challenges. The second presentation will review the current and upcoming synthetic aperture radar (SAR) missions and their advanced exploitations to deliver actionable information for society in the context of climate change and green transition. In the third presentation, exemplary space-bor
MMN	Massively Distributed MIMO as the New Paradigm in 6G – Implementa- tion Challenges and Opportunities Sponsor/s: IMS Organizers: Christian Fager, Chalmers University of Technology; Ulf Gustavsson, Ericsson ROOM: 149AB 08:00 - 11:50	Large-scale distributed or cell-free MIMO is the next step of the wireless evolution beyond 5G and massive MIMO. The main idea is to utilize a very large number of distributed, low-cost and low-power access points to form a network where the service is user-centric rather than divided into cells as done in conventional wireless networks. With the access points and antenna elements spread out spatially, the network can provide a more ubiquitous service in terms of coverage and throughput, but several challenges come along compared to conventional co-located MIMO. As coherent operation is needed to manage interference, aspects such as front/back-haul and RF synchronization requires novel schemes that scales well with distributed antenna systems. Keeping the access points simple and cost effective also implies challenges on RF front-end design and signal processing algorithms commonly used in co-located antenna arrays. In this workshop, we present some of the recent advances in research on RF and microwave technology aimed to address the challenges of a truly distributed and cell-free network.
		WALTER E. WASHINGTON CONVENTION CENTER

INTERSOCIETY PANEL SESSION

12:00 - 13:30

Monday, 17 June 2024

Room: 201

PL1: Meeting IEEE Division IV Society Presidents

ORGANIZERS: Alistari Duffy, Division IV; Ke Wu, Polytechnique Montréal

PANELISTS:

Branislav Notaros, IEEE Antennas and Propagation Society Wen-Chung Kao, IEEE Consumer Technology Society Gregory Durgin, IEEE Council on RFID John La Salle, IEEE Electromagnetic Compatibility Society Maurizi Bozzi, IEEE Microwave Theory and Techniques Society Vesna Sossi, IEEE Nuclear and Plasma Sciences Society

ABSTRACT: This panel session offers a chance to engage in dialogue with the Presidents of IEEE Societies within IEEE Division IV "Electromagnetics and Radiation." Given their shared research domains, this session presents a valuable opportunity to exchange perspectives on forthcoming technological challenges and foster avenues for future inter-society collaboration.

MONDAY

RFIC PANEL SESSION

12:00 – 13:30 Monday, 17 June 2024

Room: 202AB

PL2: RF and Microwave League of Champions

ORGANIZERS: James Buckwalter, Univ. of California, Santa Barbara; Shahriar Shahramian, Nokia-Bell Labs

PANELISTS:

Ramesh Harjani, Univ. of Minnesota Payam Heydari, Univ. of California, Irvine Donald Lie, Texas Tech Univ. Debabani Choudhury, Intel Corp. Osamu Kusano, Keysight Technologies Bodhisatwa Sadhu, IBM Corp.

ABSTRACT: Rather than a traditional panel, the RF and Microwave League of Champions will be a quiz show pitting a team of academics against a team of industry veterans to answer technical riddles sourced from RF and microwave history. Each team will comprise 3 members who will answer as a team on questions about RF/ microwave theory, circuits, and systems. This event will be an entertaining diversion from the typical technical panel and hopefully a great deal of fun for participants.

2024 IEEE FELLOWS

ACTIVE MTT-S MEMBERS, EVALUATED BY MTT-S

WALTER E. WASHINGTON CONVENTION CENTER | BALLROOM

RECOGNIZING THE ACHIEVEMENTS OF ITS MEMBERS IS AN IMPORTANT PART OF THE MISSION OF IEEE. Each year, following a rigorous evaluation procedure, the IEEE Board of Directors confers a selected group of members for elevation to IEEE Fellow. The IEEE Fellow is the highest grade of membership in the IEEE. Less than 0.1% of voting members are selected annually for this member grade elevation. It is recognized by the technical community as a prestigious honour and an important career achievement. The following MTT-S members have been elevated to IEEE Fellow, effective 1 January 2024.

Joseph Bardin	for contributions to cryogenic microwave circuits
Alexander Chenakin	for contributions to microwave frequency synthesizer technologies
Paolo Colantonio	for contributions to microwave power amplifiers

Frank Ellinger	for contributions to radio frequency integrated phase shifters and amplifiers
Deukhyoun Heo	for contributions to CMOS power amplifiers in multi-layer packages and reconfigurable reactive components
Telesphor Kamgaing	for contributions to microwave and millimeter-wave packaging and system integration technologies
Dietmar Kissinger	for contributions to millimeter-wave integrated circuits
Miguel Laso	for contributions to high-power and smooth-profiled filters
Changzhi Li	for contributions to portable microwave radar sensor technologies
Kaixue Ma	for contributions to low-loss substrate integrated suspended line technology and reconfigurable millimeter-wave front-end integrated circuits
Ho-Jin Song	for contributions to wireless terahertz technology
Alberto Valdes-Garcia	for contributions to millimeter-wave circuits and systems for communications
ACTIVE MTT-S MEMBER	S, EVALUATED BY OTHER IEEE SOCIETIES/COUNCILS
Premjeet Chahal	for contributions to additive manufacturing and materials characterization
Ji Chen	for contributions to implantable medical device safety in MRI
Yu Jian Cheng	for contributions to substrate integrated millimeter-wave array antenna technology
Gregory Durgin	for contributions to the theory of fading in multi-antenna RFID systems
Josep Miquel Jornet	for contributions in terahertz communication and nano networking
Atif Shamim	for contributions in the field of antenna-on-chip and antenna-in-package
Osama Shana'a	for leadership in developing low-cost high-performance RF transceivers
Mohammad Sharawi	for contributions to multiband, reconfigurable, and integrated active multiple-input and multiple-output antenna systems
Kim Fung Tsang	for contributions to systems safety engineering

THREE MINUTE THESIS 14:00 - 16:00 Monday, 17 June 2024 Room: 209ABC

In its eighth year, the IMS2024 3MT competition is designed to stimulate interest in the wide range of applications of microwave technology. Contestants will make a presentation of three minutes or less, supported only by one static slide, in a language appropriate to a non-specialist audience. The winners of the 3MT competition will receive their prizes at the Student Awards Luncheon on Thursday, 20 June 2024.

THIS YEAR'S FINALISTS ARE:

We2E-1 Bending The Rules: The Art and Science of Crafting Origami Antennas Hani Al Jamal, *Georgia Institute of Technology*

Tu1C-4 Adaptive Microwave Filtering in Mobile Devices for Interference Mitigation Xingyu Du, University of Pennsylvania

We1E-4 Towards Multifunctional Structures: Printed Wireless Electronics Miren Hayet-Otero, UPV/EHU, Tecnalia

Tu3E-3 Unleashing the Power of Photonics for Generating Flexible and Clean Microwave Signals for future Communications Amany Kassem, University College London

IF1-2 Shining Light into Microwave Pedram Shirmohammadi, University of Virginia

Th1C-1 A Barrier Free Internet to Everyone Through Space Bharath Cimbili, University Freiburg Th1H-2 Smart Mirrors: Enabling the Invisible Pathways of Future Wireless Communications

Aditya Singh Shekhawat, Arizona State University

Tu1A-4 Wireless Power Meets Neurostimulation: Electromagnetic Solutions for Brain Implants Mohammad Abdolrazzaghi, University of Toronto

Tu3E-2 Contactless Muscle Movement Detection Marius Schmidt, Friedrich-Alexander-Universität Erlangen-Nürnberg

IF1-18 Suppression of Interference in Communication in a Fairly Simple Way

Kevin Martin, University College Cork

We3G-3 Dual-Channel Half-Mode Substrate-Integrated Waveguide Link Utilizing Mode Division Multiplexing Mohamed Elsawaf, University of Southern California

Tu2A-3 Wireless Charging in 6G Xinyu Kong, *IHE(KIT)* Th1I-4 GaN-on-Si for Next-Gen Wireless Communication Rana ElKashlan, *imec*

IF1-35 Body-centric Communication to support High Data Rate applications for augmented living Samyadip Sarkar, *Purdue University*

Tu3F-2 Augmented Reality Enhanced Microwave Sensors for Structural Health Monitoring Vishal Balasubramanian, University of British Columbia

Tu4F-4 Exploring into Greater Depth the Different Interrogation Methods that Exploit the Non-linearity of the Harmonic Transponder Elsie Eyram Anthonio, *University of Vermont*

RMo2C-3 Redefining Radios: From Antenna Overload to Wireless Wonderland Jamie C. Ye, *Cornell University*

VISIT THE SOCIETIES PAVILION

Learn how you can take advantage of all the great things the IEEE Microwave Theory and Technology Society (MTT-S) has to offer!

- Tips for writing papers for conference and journals
- Student Fellowships and other programs
- Humanitarian and SIGHT efforts
- Advertising with MTT-S

Booth 1605

IEEE Antennas and Propogation Society IEEE Electromagnetic Compatibility Society IEEE Geoscience and Remote Sensing Society IEEE Microwave Theory and Technology Society IEEE LEO SatS Get your complimentary professional headshot taken in the Societies Pavilion (Booth 1605) during the Exhibition Hours!

ADVANCING RF & MICROWAVE DESIGN with TRUSTED INSIGHTS and SOLUTIONS

Whether you're looking for cutting-edge technology, the latest business developments, engineering reference data, or hot new products, Photonics Online has all the information you need. Photonics Online delivers the latest information about the laser, optics, optoelectronics, fiber optics, and imaging industries. Our site is structured to serve the needs of designers, engineers, system integrators, product specifiers, technical managers, business executives, consultants and OEM manufacturers.

Whether you're an RF/microwave design engineer, engineering manager, system integrator, or any other role involved in the design and development of RF/microwave systems, wireless systems, military devices, and other commercial communication systems, RF Globalnet is the most accurate and convenient technical source of design and product information available.

SCAN THE OR CODE TO JOIN THE COMMUNITY

Come see us at Booth 1248

		WALI	ER E. WASHING	ION CONVENTION CENTER	
IMS INDUSTRY SHOWCASE	15:10-17:00	Monday,	17 June 2024	Ballroom Foyer	
Join us before the IMS Plenary Session for the Industry Showcase when	re selected IMS paper aut	hors will prese	ent their work.		
PAPER TITLE			SPEAKER		
Th2G- 3: Enhanced Accuracy in On-Wafer Noise Figure Measurement	s at Sub-Terahertz Freque	encies	Nizar Messaoudi, Keysight Technologies		
Tu4C-3: Advancements in 300mm GaN-on-Si Technology with Industry's First Circuit Demonstration of Monolithically Integrated GaN and Si Transistors			Qiang Yu, Intel Corporation		
Tu4E-5: A 6.8 - 9.4 GHz LNA Achieving 36.5 dB Peak Gain, Consuming 4.28 mW with an Adjustable Threshold Limiter for IR-UWB Applications			Stefan Lepkowski, Sandia National Laboratories		
Th1E-2: A Novel Q-Choked Resonator for Microwave Material Measurements Alleviating Sample Thickness Limitations of Existing Techniques			Malgorzata Celuch, QWED Sp. z o.o.		
Tu4A-5: Incorporating Resistive Foil RF Attenuators and Equalizers on and within PCBs from DC to 60 GHz: Design, Analysis, and Experimental Validation			Maurio Grando, Invictus Animus Research and Design		
IF1-15: Machine-Learning Assisted Digital Predistortion Using Feedback via Dual-Polarized Antenna Arrays			Yuuichi Aoki, Sams	ung Electronics Co., Ltd.	
IF1-30: Improve RF Dual Probe Calibration Accuracy with Peer-Terminated Standards Hung			Che Fu, MPI Corpora	ation	
IF1-33: Additively Manufactured High-Power Light Weight Millimetre-Wave Band Pass Filter Optimized with AI Tuning Algorithm for 5G Space Applications			Laila Salman , ANSY	′S, Inc.	
IF1-10: A 0.9 to 4.0 GHz High Efficiency Reactively-Matched GaN Pov	IF1-10: A 0.9 to 4.0 GHz High Efficiency Reactively-Matched GaN Power Amplifier MMIC			bishi Electric Corporation	
Th2C-1: 220-GHz High-Efficiency Power Amplifiers in 250-nm and 130-nm InP HBT Technologies having 14.4-25.0% PAE and 40-60 mW Pout			Zach Griffith, Teledy	yne Scientific	
Tu1F-2: An All-Digital Synthesizer Enabled by a Convolutional Neural Network			Chris Thomas, Boeing		
Th2G-4: Measurement of Residual Phase Noise of Amplifiers at 80 GHz Using Interferometric Measurement Technique			Wolfgang Wendler,	Rohde & Schwarz GmbH & Co KG	

Stop by one of the networking lounges in Booths 561, 1438 and 2325 on the IMS Exhibit Floor, catch up with colleagues, and charge your device.

Sponsored By:

MONDAY

IMS PLENARY SESSION 17:30 - 19:00

Monday, 17 June 2024

Ballroom

Redundancy from the Sea Floor to Space: Building Reliable Capabilities for the Joint Force

IMS KEYNOTE SPEAKER:

Ms. Heidi Shyu, Under Secretary of Defense for Research and Engineering (USD R&E)

ABSTRACT: Microelectronics form the backbone of modern electronic systems, essential for both military and commercial applications. However, challenges such as diminishing domestic manufacturing and supply chain vulnerabilities have underscored national security risks. In response, the Department of Defense (DoD) is collaborating with industry and academia to ensure secure and robust sources of microelectronics. Leveraging cutting-edge commercial developments, the DoD aims to bolster defense microelectronic solutions. Furthermore, the DoD is spearheading FutureG, a suite of advanced wireless network technologies, in partnership with commercial entities. This initiative not only supports military operations but also contributes to maintaining a free and open internet. As Fifth Generation (5G) technology evolves, FutureG will provide innovative solutions, guiding future standards and cementing U.S. leadership in information technology.

In an address delivered by The Honorable Heidi Shyu, Under Secretary of Defense for Research and Engineering, the importance of wideband sensors in highly contested environments will be discussed as will how the DoD is prioritizing the development of multifunctional sensors capable of addressing cyber, electronic warfare, radar, and communication threats. Shyu will argue this integrated approach, from the ocean floor to space, will ensure reliability, adaptability, and superiority for the joint force in confronting advanced adversaries.

SPEAKER BIO: Ms. Heidi Shyu is the Under Secretary of Defense for Research and Engineering (OUSD(R&E)). In this role, she serves as the Chief Technology Officer for the Department of Defense (DoD), mandated with ensuring the technological superiority of the U.S. military, and is responsible for the research, development, and prototyping activities across the DoD enterprise. She also oversees the activities of the Defense Advanced Research Projects Agency (DARPA), the Missile Defense Agency (MDA), the DoD Laboratory and Engineering Center enterprise, and the Under Secretariat staff focused on developing advanced technology and capability for the U.S. military.

Full speaker bio at http://ims-ieee.org/imsplenarysession

IMS WELCOME RECEPTION 19

19:30 - 21:30

IMS2024 starts with a welcome event on Monday for all attendees, which will be hosted at The National Museum of African American History and Culture following the IMS2024 Plenary Session.

About the Museum: The National Museum of African American History and Culture is the only national museum devoted exclusively to the documentation of African American life, history, and culture. It was established by an Act of Congress in 2003, following decades of efforts to promote and highlight the contributions of African Americans. To date, the Museum has collected more than 40,000 artifacts and nearly 100,000 individuals have become members. The Museum opened to the public on 24 September 2016, as the 19th museum of the Smithsonian Institution.

There are four pillars upon which the NMAAHC stands:

- 1. It provides an opportunity for those who are interested in African American culture to explore and revel in this history through interactive exhibitions
- 2. It helps all Americans see how their stories, their histories, and their cultures are shaped and informed by global influences
- 3. It explores what it means to be an American and share how American values like resiliency, optimism, and spirituality are reflected in African American history and culture
- 4. It serves as a place of collaboration that reaches beyond Washington, DC to engage new audiences and to work with the myriad of museums and educational institutions that have explored and preserved this important history well before this museum was created.

THE NATIONAL MUSEUM OF AFRICAN AMERICAN HISTORY AND CULTURE

RFIC TECHNICAL SESSIONS 08:00 - 09:40

	151AB	152AB
	RTu1B: RF and Mixed-Signal Circuits for Cryogenic and High-Radiation Environments	RTu1C: Digital Power Amplifier and Transmitter Systems
	Chair: Alexandre Siligaris, CEA-LETI Co-Chair: Travis Forbes, Sandia National Laboratories	Chair: Xun Luo, <i>UESTC</i> Co-Chair: Zhiming Deng, <i>MediaTek</i>
08:00	RTu1B-1: Broadband Noise Characterization of SiGe HBTs Down to 4K J. Benserhir, <i>EPFL</i> ; Y. Zou, <i>EPFL</i> ; Y. Peng, <i>EPFL</i> ; H.C. Han, <i>EPFL</i> ; E. Charbon, <i>EPFL</i>	RTu1C-1: A Watt Level, 5–7GHz All Digital Polar TX Based on 3.3V Switched Capacitor Digital PA in 16nm Fin-FET for Wi-Fi7 Applications N.R. Shay, Tel Aviv University; E. Solomon, Intel; L. Zohar, Intel; A. Ben-Bassat, Intel; E. Socher, Tel Aviv University; O. Degani, Tel Aviv University
08:20	RTu1B-2: A Fully Integrated Three-Channel Cryogenic Microwave SoC for Qubit State Control in °Be+ Trapped-Ion Quantum Computer Operating at 4K	RTu1C-2: A SAW-Less 3FLO-Suppression RF Transmitter with a Transformer-Based N-Path Switched-Capacitor Modulator Achieving -157.6dBc/
02	P. Toth, P.S. Eugine, A. Meyer, Technische Univ. Braunschweig; K. Yamashita, Keio Univ.; S. Halama, Leibniz Univ. Hannover; M. Duwe, Leibniz Univ. Hannover; H. Ishikuro, Keio Univ.; C. Ospelkaus, Leibniz Univ. Hannover; V. Issakov, Technische Univ. Braunschweig	Hz Output Noise and -61dBc CIM ₃ G. Qi, Sun Yat-sen Univ.; H. Guo, Sun Yat-sen Univ.; PI. Mak, University of Macau; Y. Li, Sun Yat-sen Univ.
<u>-40</u>	RTu1B-3: A Switchless Dual-Core Triple-Mode VCO Achieving 7.1-to-15.7GHz Frequency Tuning Range and 202.1dBc/Hz Peak FoM at 3.7 Kelvin	RTu1C-3: A 32.3dBm Quadrature Complex Domain Doherty Power Amplifier Based on Switched Constant-Current and Symmetrical Transformer Achieving 21 6% Average Power-Added Efficiency
	Y. Wu, University of Macau; Y. Peng, University of Macau; B. Huo, University of Macau; J. Yin, University of Macau; R.P. Martins, University of Macau; PI. Mak, University of Macau	T. Wang, Fudan Univ.; L. Shi, Fudan Univ.; D. Hua, Fudan Univ.; P. Cao, Fudan Univ.; J. Xu, Fudan Univ.; Z. Hong, Fudan Univ.
09-00	RTu1B-4: A 46.7-dB Gain 9.3-K Noise Temperature 5.8-mW Two-Fold Current Reuse Dual Noise-Canceling LNA in 28-nm CMOS for Qubit Readout	RTu1C-4: A 5G FR2 n260/n259 Phased-Array Transmitter Front-End IC in 28-nm CMOS FD-SOI with 3-Stack Power Amplifier Employing OPA-Based Bias Scheme and Cross-Tied Inductor Topology
	NARLabs-TSRI; PC. Wu, NARLabs-TSRI; HH. Tsai, NARLabs-TSRI; S.S.H. Hsu, National Tsing Hua Univ.	J. Yun, H. Lim, J. Jeong, I. Lee, D. Kim, K. Kim, HW. Choi, G. Park, G. Baek, ET. Sung, A. Jain, F.A. Malekzadeh, V. Bhagavatula, I.S.C. Lu, S. Son, HC. Park, J. Hur, S. Yoo, Samsung
0.0	RTu1B-5: A Study of Total Dose Radiation Effects in Ka-Band Fractional-N PLLs in 45nm SiGe BiCMOS	RTu1C-5: A 0.48mm ² Sub-2.4GHz Transceiver with Reused Matching Network and Duty-Cycle Controlled
	D. Dolt, Texas A&M Univ.; L. Pelan, AFRL; S. Mcdonnell, AFRL; S. Smith, Ohio State Univ.; T. Dean, AFRL; D. Reents, Texas A&M Univ.; W. Gouty, AFRL; T. Quach, AFRL; W. Khalil, Ohio State Univ.; S. Palermo, Texas A&M Univ.	H. Huang, NUDT; X. Liu, Beijing Ningju Technology; Z. Tang, Tsinghua Univ.; W. Song, Tsinghua Univ.; Y. Ma, Tsinghua Univ.; Y. Zhang, Beijing Ningju Technology; X. Ma, Beijing Ningju Technology; M. Zhang, Tsinghua Univ.; J. Wang, Tsinghua Univ.; K. Lu, NUDT; Z. Wang,
09-20		Isingnua Univ.; G. Li, Tsinghua Univ.

RFIC TECHNICAL SESSIONS 10:10 - 11:50 Tuesday, 18 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

151AB	152AB	
Tu2B: Silicon Wireless Systems in the D-Band Ind Beyond	RTu2C: Power Amplifiers for Satellite Applications	
:hair: Minoru Fujishima, <i>Hiroshima University</i> :o-Chair: Shahriar Shahramian, <i>Nokia Bell Lab</i> s	Chair: Tolga Dinc, Texas Instruments Co-Chair: Aritra Banerjee, University of Illinois at Chicago	
Tu2B-1: A 210-to-250GHz Silding-IF Frequency- nterleaved Transceiver with On-Chip Bow-Tie Antenna nd 4th-Order FIR-Embedded Digital Modulator	RTu2C-1: An Efficient, High Power Q-Band SiGe HBT Power Amplifier with a Compact Four-Way Wilkinson Power Combiner Balun for Emerging Very Low-Earth- Orbit SATCOM	10:10
Nuc, Shighda Ghi, Y. Deng, Isinghda Ghin, Y. Golig, Singhua Univ.; T. Ma, Tsinghua Univ.; H. Jia, Tsinghua Iniv.; Q. Wu, Tsinghua Univ.; J. Xue, Tsinghua Univ.; D. Li, singhua Univ.; H. Liu, Tsinghua Univ.; Y. Sun, Tsinghua Iniv.; B. Chi, Tsinghua Univ.	H. Lee, Ajou Univ.; I. Han, Ajou Univ.; J. Hwang, Ajou Univ.; I. Ju, Ajou Univ.	1
Tu2B-2: A 2×40Gb/s Ultra-Wideband 131–173GHz Jual Receiver for Point-to-Point Communication systems with NF of 5.7dB in RFSOI	RTu2C-2: A Compact, Highly Linear Ku-Band SiGe HBT Power Amplifier Using Shared Single Center-Tap Four-Way Output Transformer Balun for Emerging Low Earth Orbit SATCOM Phased-Array Transmitter	
. Ann, Onix of California, San Diego, A. Annied, Onix of alifornia, San Diego; G.M. Rebeiz, Univ. of California, ian Diego	B. Yoon, Hanyang Univ.; I. Han, Ajou Univ.; J. Kim, Hanyang Univ.; I. Ju, Ajou Univ.	
Tu2B-3: A 112.64-Gb/s CMOS D-Band Channel- ggregation RX System-in-Package Hamani, CEA-LETI; J.L. Gonzalez-Jimenez, CEA-LETI;	RTu2C-3: An Efficient Ku-Band Two-Way Vertical-Like Power-Combining Power Amplifier Using Merged Inter-Stage Transformers Achieving 23–23.4dBm Psat and 45.2–46.6% Peak PAE in 65nm CMOS	
i. Singaris, CEA-LETI; F. Fugira-Marizino, CEA-LETI; 2. Dehos, CEA-LETI; JB. David, CEA-LETI; N. Cassiau, 2EA-LETI; A. Clemente, CEA-LETI	JH. Kim, JT. Lim, JE. Lee, JH. Song, JT. Son, MS. Baek, EG. Lee, S. Choi, <i>Chungnam National University</i> ; HW. Choi, <i>Samsung</i> ; SM. Moon, <i>ETRI</i> ; D. Chang, <i>ETRI</i> ; CY. Kim, <i>Chungnam National University</i>	1
Tu2B-4: A D-Band Scalable 128-Channel Dual- olarized Receive Phased-Array with On-Chip Down converters for 2×2 MIMO Achieving 2×42Gbps	RTu2C-4: A K-Band CMOS Power Amplifier Using an Analog Predistortion Linearizer with 22.1dBm Psat and 0.9° AM-PM Distortion	1:10
A. Jung, Univ. of California, San Diego; L. Li, Univ. of alifornia, San Diego; A. Ahmed, Univ. of California, San Diego; O. Hassan, Univ. of California, San Diego; A.M. Rebeiz, Univ. of California, San Diego	J. Lim, ETRI; W. Lee, Chonnam National Univ. ; SM. Moon, ETRI; E. Oh, Chonnam National Univ. ; S. Wang, ETRI; D. Chang, ETRI; J. Park, Chonnam National Univ.	
	RTu2C-5: A 2–18GHz Frequency Reconfigurable Nonuniform Distributed Power Amplifier with 13.3W Average Power and 39% Average Efficiency	11:30
	S. Ma, UESTC; X. Li, UESTC; Z. Yu, UESTC; D. Shi, UESTC; X. Tang, UESTC; Y. Wang, UESTC	
		11:50

JOIN US FOR Sweet Treat Tuesday AT 12:30!

Enjoy a "Sweet Treat" in the company of attendees, exhibitors, and colleagues on the IMS Exhibit Floor.

Sponsored By:

ERAVANT ORMERLY SAGE MILLIMETER

MI-WAVE Millimeter Wave Products Inc.

0 all around you

IMS TECHNICAL SESSIONS 08:00 - 09:40

Tuesday, 18 June 2024

	142400	44540	1404	1400
	143ABC	145AB	146A	146B
	Tu1A: Advanced Systems for Wireless Power Beaming	Tu1B: Advanced Non-Planar Passive Components	Tu1C: Magnetostatic, Ferroelectric, and Phase Change Material Based Microwaye Devices	Tu1D: Advanced Low-Phase-Noise Signal Generation Techniques
0	Chair: Naoki Hasegawa, Softbank Co-Chair: Marco Dionigi, Università di Perugia	Chair: Tarek Djerafi, <i>INR</i> S Co-Chair: Mohamed M. Fahmi, <i>DRDC</i>	Chair: Ruochen Lu, <i>University of Texas at</i> <i>Austin</i> Co-Chair: Tejinder Singh, <i>Dell</i> <i>Technologies</i>	Chair: José Luis Gonzalez-Jimenez, CEA-LETI Co-Chair: Hong-Yeh Chang, National Central University
8:00	Tu1A-1: POWER: Persistent Optical Wireless Energy Relay, and DARPA's Pathway to Energy Web Dominance	Tu1B-1: Exploiting the Coupling Variation of 3D-Printed Cavity Filters for Complex Dielectric Permittivity Sensing	Tu1C-1: Temperature Compensated Magnetostatic Wave Resonator Microsystem	Tu1D-1: A Ka-Band 256-QAM Ninefold Sub-Harmonically Injection-Locked CMOS I/Q Modulator Using Pulsed Oscillator
08:10	P. Jaffe, DARPA	B. Allain, <i>lelecom Saint-Etienne</i> ; N. Delmonte, <i>Università di Pavia</i> ; L. Silvestri, <i>Università di Pavia</i> ; S. Marconi, <i>Università di Pavia</i> ; G. Alaimo, <i>Università di Pavia</i> ; F. Auricchio, <i>Università di Pavia</i> ; M. Bozzi, <i>Università di Pavia</i>	R. Wang, BAE Systems; C. Devitt, Purdue Univ.; E. Langlois, BAE Systems; S. Tiwari, Purdue Univ.; A. Ashok, Purdue Univ.; S. Bhave, Purdue Univ.	LY. Chen, <i>National Central Univ.;</i> PY. Chen, <i>National Central Univ.;</i> HY. Chang, <i>National Central Univ.</i>
08:20	Tu1A-2: A 256-Elements Phased-Array Relay Transceiver for 5G Network Using 24GHz Wireless Power Transfer with Discrete ICs	Tu1B-2: A Ka-Band RWG Gysel Power Divider and Combiner Based-on Fixed Characteristic Impedance and Resistor- Less Loaded Ports	Tu1C-2: A Novel Wideband RF Turbo Switch Using Phase-Change-Material in a SiGe BiCMOS Process	Tu1D-2: A Ka-Band High Power and Low Phase Noise GaN MMIC Oscillate with a Compact Open-Loop Folded Resonator Filter
03:30	M. Ide, Tokyo Tech; K. Yuasa, Tokyo Tech; S. Kato, Tokyo Tech; T. Tomura, Tokyo Tech; K. Okada, Tokyo Tech; A. Shirane, Tokyo Tech	A. Moulay, INRS; A. Zerfaine, INRS; T. Djerafi, INRS	F. Amin, Northrop Grumman; I. Beglin, Northrop Grumman; N. Edwards, Northrop Grumman; N. El-Hinnawy, Tower Semiconductor; G. Slovin, Tower Semiconductor; D. Howard, Tower Semiconductor; D. Nichols, Northrop Grumman; R.M. Young, Northrop Grumman	YC. Chang, National Tsing Hua Univ.; J. Wang, National Tsing Hua Univ.; YC. Chang, NARLabs-TSRI; CC. Chen National Tsing Hua Univ.; DC. Chang, NARLabs-TSRI; Y. Huang, University of Liverpool; S.S.H. Hsu, National Tsing H Univ.
~ <u>4</u> 0	Tu1A-3: A 24-GHz 4-Element Multi- Beam Wireless Energy Harvesting Array with Class-F Rectifiers Achieving 51.5%	Tu1B-3: 3-D Centrally-Loaded FSS Leveraging Conductive and Dielectric Multimaterial Additive Manufacturing	Tu1C-3: SPST Acoustic Switch Based on Poled Ferroelectrics	Tu1D-3: An Ultra-Low Phase Noise Substrate-Integrated-Waveguide Oscillator
08-20	PCE M. Ghorbanpoor, ETH Zürich; E. Le Roux, CSEM; A.M.A. Najafabadi, CSEM; O. Vorobyov, CSEM; P. Nussbaum, CSEM; H. Wang, ETH Zürich	for Broadband Performance X. Lv, UTS; Z. Luo, UTS; Y. Yang, UTS	H. Desaı, Univ. of Michigan; M.Z. Koohi, Univ. of Michigan; A. Mortazawi, Univ. of Michigan	M. Sun, SUSTech; D. Lu, SUSTech; J. C SUSTech; M. Yu, SUSTech
00-00	Tu1A-4: Subwavelength-Scale 2D Superoscillatory Beam Scanning in Huygens' Box for Wireless Power Delivery	Tu1B-4: 10-Gbit/s Close Proximity Communication in 120GHz Band Sheet LAN Using Dielectric Sheet as Transmission Medium	Tu1C-4: Meander Line Transducer Empowered Low-Loss Tunable Magnetostatic Wave Filters with Zero Static Power Consumption	Tu1D-4: 19-GHz VCO with Phase Noise of -117dBc/Hz at 1-MHz Offser Using an Array of Near Minimum Size Transistors and Intelligent Post
N0-1N N	M. Abdolrazzaghi, <i>Univ. of Toronto;</i> R. Genov, <i>Univ. of Toronto;</i> G.V. Eleftheriades, <i>Univ. of Toronto</i>	A. Hirata, Chiba Institute of Technology; Y. Komori, Chiba Institute of Technology; T. Nishihara, Chiba Institute of Technology; Y. Kawamoto, Osaka Univ.; T. Nagatsuma, Osaka Univ.	X. Du, Univ. of Pennsylvania; S. Yao, Univ. of Pennsylvania; Y. Ding, Univ. of Pennsylvania; A.J. Geers, Univ. of Pennsylvania; F. Aflatouni, Univ. of Pennsylvania; M. Allen, Univ. of Pennsylvania; R.H. Olsson III, Univ. of Pennsylvania	F. Jalalibidgoli, Univ. of Texas at Dallas Y. Makris, Univ. of Texas at Dallas; K.K. Univ. of Texas at Dallas
9-20	Tu1A-5: Improvement of Data Rate of SWIPT System in Phantom by Integrated Metamaterial-Inspired Absorber for Biomedical Applications	Tu1B-5: Research and Development of WRD600: Innovations in High-Power Double-Ridge Waveguide Combiners for Ultra-Wideband Applications	Tu1C-5: High-Linearity Bandstop Filter with Frequency and Bandwidth Tunability Utilizing Phase-Change Material Switches	Tu1D-5: A 2.9-to-7.2GHz Dual-Core Quad-Mode VCO Achieving 206.5dBc Hz FoMT in 55nm CMOS
00-30	X. Jiang, Kyushu Univ.; R.K. Pokharel, Kyushu Univ.; A. Barakat, Kyushu Univ.	M.M.M. Ali, Scientific Microwave; M.O. Shady, Scientific Microwave; M. Elsaadany, £TS; S.I. Shams, Concordia Univ.; G. Gagnon, £TS; K. Wu,	M.D. Hickle, BAE Systems; C. Huang, BAE Systems	Υ. Ζhao, XJIU; C. Liang, XJTU; C. Fan, X Z. Xue, XJTU; X. Dong, XJTU; Z. Gao, XJ Y. Xin, XJTU; B. Tang, XJTU; L. Geng, XJT

TUESDAY
IMS TECHNICAL SESSIONS

08:00 - 09:40 Tuesday, 18 June 2024 ns & Applications Emerging Technologies & Applications

WALTER E. WASHINGTON CONVENTION CENTER

Focus & Special Sessions

Microwave Field, Device & Circuit Techniques	Passive Components	Active Components	
146C	147AB	3	
Tu1E: Photonic-Enabled Systems	Tu1F: Al/ML for Wirel	ess Systems	
and Solutions Chair: Jonathan Comeau, BAE Systems Co-Chair: Steven M. Bowers, University of Virginia	Chair: Adrian Tang, Jet Pro Laboratory Co-Chair: Qi-jun Zhang, C University	opulsion Carleton	
Tu1E-1: Silicon Photonic Integrated Circuit Beamformer for RF Photonic Applications	Tu1F-1: A Modular, Distri Scalable DOA Estimator f Systems	buted and for MIMO	20-20
T. Creazzo, C. Stine, C. Creavin, C. Harrity, K. Shreve, F. Wang, P. Yao, J. Murakowski, Phase Sensitive Innovations; G. Schneider, S. Shi, Univ. of Delaware; C. Schuetz, Phase Sensitive Innovations; D.W. Prather, Univ. of Delaware	A.S. Assoa, Georgia Tech; Georgia Tech; S. Ryu, Geo A. Raychowdhury, Georgia	A. Bhat, rgia Tech; & Constant a Tech	AD 10
Tu1E-2: Photonic-Enabled Terahertz Phase Arrays Using Dielectric Rod Waveguides for 6G Wireless	Tu1F-2: An All-Digital Syr Enabled by a Convolution Network	ithesizer Nai Neural	22
Communications G. Carpintero, D. Headland, UC3M; G. Schwanke, M. Deumer, S. Nellen, S. Lauck, L. Liebermeister, Fraunhofer HHI; K. Spanidou, UC3M; M. Ali, A. Rivera, Leapwave Technologies; R. Kohlhaas, Fraunhofer HHI	C.M. Thomas, Boeing; M. Laboratories; L. Dong, Baj V. Leung, Baylor Univ.	Abderezai, HRL ylor Univ.;	A0-00
Tu1E-3: 1-Bit Digital Radio-over-Fiber System with Hybrid Architecture for 40-GHz Band	Tu1F-3: A Novel CNN-bas for Over-the-Air 5G OFDN Estimation	ed Architecture	20- ID
Y. Kase, NEC; J. Park, NEC; S. Hori, NEC	Fábio Coutinho, Instituto I Telecomunicacoes; Huger Instituto De Telecomunica Georgieva, IEETA; Arnaldo Instituto De Telecomunica	De fles Silva, acoes; Petia Oliveira, acoes	00.70
Tu1E-4: Ultrawideband Modular RF Frontend Development for Photonically-	Tu1F-4: ChirpNet: Noise- Sequential Chirp Based I	Resilient E	20-20
enabled Imaging Receiver S. Shi, Univ. of Delaware; F. Wang, J. Abney, Z. Aranda, Phase Sensitive Innovations; G. Schneider, Univ. of Delaware; C. Schuetz, C. Harrity, K. Shreve, M. Zablocki, S. Dontamsetti, R. Lawrence, Phase Sensitive Innovations;	Processing for Object De S. Sharma, Georgia Tech; Georgia Tech; S. Mukhopa Tech	tection H. Kumawat, adhyay, <i>Georgia</i>	00-1 O
D. Frainer, UNIV. OF Delaware TU1E-5: Experimental Demonstration of a Wideband Frequency Hopping Radio Link		UZ:60	^ ^
S.R. O'Connor, A. Voshell, D. Moody, N. Tomasello, E. Konitzer, W. Norman, T.R. Clark, Johns Hopkins APL		U9:3	2
Tu1E-6: Tunable Optically Fed Radiofrequency Source for Distributing Coherent High-Fidelity Signals		0	>
C. Harrity, A.A. Mahmud, Phase Sensitive Innovations; G. Schneider, Univ. of Delaware; T. Creazzo, J. Murakowski, D. Chester, K. Clyne, T. Mascitelli,		U9:4U	20.10

C. Schuetz, Phase Sensitive Innovations; D.W. Prather, Univ. of Delaware

IMS GAME ZONE BOOTH 1366

Head over to the Game Zone to unwind and connect with fellow attendees.

Challenge your colleagues to throw the fastest pitch, conquer Giant Pacman, or test your teamwork with Giant Jenga.

Feeling lucky? Try your hand at the Phone Booth Claw Machine for a chance to win a fun prize!

Sponsored By:

Omni Spectra AN Amphenol COMPANY

IN	DUST	RY WORKSHOPS	08:00 - 17:20	Tuesday, 18 June 2	024			
SI TIN	ESSION CODE 1e & Locatio	N TITLE AND ABSTRACT			SPEAKER/S, AFFILIATION			
IWTU1	08:00 - 09: Room: 144	 Technologies and Circuits for 5G/5G+ RF From performance, cost and size of 5G RF solutions a ments and it is one of the driving factors for sem more than 6 billion in 2022 and 5G LTE brings h and mm-Wave spectrum. Mm-Wave up to 300G proliferation of worldwide smartphones has bee of CMOS technology in lower feature nodes as 3 hance RF CMOS through digital signal processir will cover 5G semiconductor technologies and a cellular applications, the challenges for the 5G of the sector. 	Technologies and Circuits for 5G/5G+ RF Front End Modules —The research area of improving the performance, cost and size of 5G RF solutions and evolution to 6G is very active with many developments and it is one of the driving factors for semiconductor industry. Mobile cellular subscribers reached more than 6 billion in 2022 and 5G LTE brings high data capacity and low latency using sub-6GHz and mm-Wave spectrum. Mm-Wave up to 300GHz will play a major role in future 6G networks. The proliferation of worldwide smartphones has been in part possible due to increased computational power of CMOS technology in lower feature nodes as 3nm/7nm. This has made also possible to essentially enhance RF CMOS through digital signal processing (DSP) and digital calibration. The industrial workshop will cover 5G semiconductor technologies and architectures currently used in RF Front End Modules for cellular applications, the challenges for the 5G deployment as well as the evolution to 6G.					
IWTU2	10:10 - 11: Room: 144	Linearization of RF Power Amplifiers for Wide as 5G, WLAN, and SatCom as well as radar syst cies and larger signal bandwidths. These trends and power amplifiers efficiency. This workshop i measurements with behavioral models and pro testing of linearization techniques. We will intro linearization techniques such as DPD, also takin characterization and behavioral models to trade other metrics for 5GNR waveforms.	Salvatore Finocchiaro, Jeff Gengler, <i>Qorvo Inc.</i> , Markus Lörner, Florian Ramian, <i>Rohde & Schwarz GmbH</i> , Wissam Saabe, <i>AMCAD Engineer-</i> <i>ing</i> ; Giorgia Zucchelli, <i>MathWorks</i> <i>B.V.</i>					
IWTU3	13:30 - 15: Room: 144	 Model-Based Design of Stable High Efficience successful model based GaN power amplifier d ing stable high efficiency amplifiers will be outlik Keysight Technologies' Pathwave Advanced Des models for Qorvo GaN HEMT devices developed challenges, such as load-modulated design will enabled by the new WS-probe, now available in GaN models. 	Fouad Boueri, <i>Qorvo USA;</i> Dr. Larry Dunleavy, <i>Modelithics,</i> <i>Inc.;</i> Matt Ozalas, <i>Keysight</i> <i>Technologies;</i> Dr. Taylor Barton <i>Univ. of Colorado</i>					
IWTU4	15:40 - 17: Room: 144	Markus Lörner, Rohde & Schwarz; Vince Mallette, MPI Corp.; Bryan Hosein, Sajjad Ahmed, Focus Microwaves; Andre Engelmann, Friedrich-Alexander-Univ. Erlangen-Nürnberg; Marco Dietz, Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT						
ST	UDENT	DESIGN COMPETITIONS	09:30 - 17:00	Tuesday, 18 June 2024	BOOTH 2439, MS EXHIBIT FLOOR			
All attendees are invited to the annual IMS Student Design Competitions on Tuesday, 18 June 2024. Students have been busy over the past several months designing and building solutions to the challenging engineering problems presented in the nine student design competitions listed below. Judges will measure the students' designs at this event to determine the winners of the various competitions. Come to this event to cheer on the students, celebrate their hard work, and learn about their innovative designs!								
SES	SION CODE	TOPIC						
	SDC1	Liectromagnetic lumor Detection						
	SDC2	Tunable Impedance Matching Network						
	SDC4	DC4 High Efficiency Power Amplifier						
	SDC5	mmWave Dual Band 3D Printed Antenna						
	SDC6	High Efficiency Power Amplifier for 50 MHz Using	GaN FET					
	SDC7	Radar for Noncontact Vital Sign Sensing						
	SDC8	Switched Acoustic Filter Module						

Reflectionless High-pass Filter Design for Load-Pull Measurement Setups

WALTER E. WASHINGTON CONVENTION CENTER

TUESDAY

1 11

SDC9

IMS2024 Young Professionals Program

Tuesday, 18 June 2024

YP Mentorship Luncheon | 12:00-13:30 | Room: 144AB | Walter E. Washington Convention Center

Understand the benefits of mentorship. Discover mentorship opportunities. Establish networks with potential colleagues and mentors.

Joint WIM/YP Panel Session: Developing Your Personal Brand | 15:45-16:30 | Room: 144AB | Walter E. Washington Convention Center

Whether you recognize it or not, you have a personal brand. If you are wondering: How did that happen? Or, how can I influence how my brand is perceived in the industry? Then, this panel is for you!

WIM, YP Receptions and Scavenger Hunt | 17:30-21:30 | The Spy Museum

After the panel, help continue the conversation and laughs at the annual WIM and YP receptions! Network over cocktails and snacks and be sure to participate in the scavenger hunt!

Wednesday, 19 June 2024

An Exploration on Leadership with DARPA's Dr. Whitney Mason, Office Director, Microsystems Technology Office (MTO), Defense Advanced Research Projects Agency (DARPA) | 09:50-10:50 | Room: 144AB | Walter E. Washington Convention Center

Abstract: Join DARPA's Dr. Whitney Mason for a fireside on key leadership traits, enabling the development of future workforces, and empowering the next generation of STEM leaders.

Dr. Whitney Mason is the director of the Microsystems Technology Office (MTO). Previously, she held the deputy director role in the agency's Strategic Technology Office (STO) from June 2022 to October 2023. Prior to joining STO, Dr. Mason served as a program manager in MTO from November 2017 to May 2022. Her research interests include imaging sensors that provide multifunction capability. In particular, she is interested in novel device structures, optics, and electronics that enable new capabilities compared to current state-of-the-art imaging systems.

Dr. Mason joined DARPA from the Army C5ISR Center, formerly the Army Communications-Electronics Research, Development and Engineering Center, where she was the director of the Science and Technology Division within the Night Vision and Electronic Sensors Directorate at Fort Belvoir, Virginia. In

that role, she led a team of scientists and engineers in the pursuit of new and improved focal plane array materials and devices; advanced read-out circuits; and enhanced optical materials and designs, lasers, and image processing. Dr. Mason holds a Doctor of Philosophy degree in physics from the University of Oklahoma and a Bachelor of Science degree in physics from Georgetown University.

Entrepreneurship 101 Panel Session: Collaboration with Young Professionals (YP) and Women in Microwaves (WIM) | 11:00-12:00 | Room: 144AB, Walter E. Washington Convention Center

YP Panel Session: Grow Your Career! | 15:10-16:10 | Room: 144AB, Walter E. Washington Convention Center

Get your first position! Earn promotions in your current position! Expand your knowledge base and network!

Panelists:

Angela Wallace, Booz Allen Hamilton

Dimitra Psychogiou, Professor University College Cork (UCC) and Tyndall National Institut

Dr. Adilson S. Cardoso, Raytheon

Thursday, 20 June 2024

Publish with Microwaves101 | 11:00-12:00

Brenda Huettner is an independent technical communication consultant who has worked for the past 40 years as a writer, editor, trainer, and manager, for both software and hardware companies. She's a principal of Microwaves101.com, an online encyclopedia of microwave engineering knowledge. Brenda is a Fellow of the Society for Technical Communication, and a Senior Member of IEEE, active in the Professional Communication Society, the Engineering Management council, and the Tucson section. She's also a member of the Usability Professionals Association. Brenda has published several books and articles, and presented half-day, full-day, and multi-day courses on writing, project management, usability, and career management. She has also been a member of NASA's Solar System Ambassador education and public outreach program for the past ten years.

Sponsored By: Microwaves&RF.

IMS TECHNICAL SESSIONS

10:10 - 11:50 Tuesday, 18 June 2024

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components** Active Components Focus & Special Sessions 145AB 146A 146B 150AB Tu2B: Advanced Non-Planar Filter Tu2A: Devices and Components for Tu2C: Recent Advances on Tu2D: Advanced mm-Wave **Effective Wireless Power Transfer** Design **Microwave Acoustics Frequency Conversion Techniques** Chair: Jasmin Grosinger, Technische Chair: Cristiano Tomassoni, Università di Chair: Holger Maune, OvG Universität Chair: Stephen Maas, Nonlinear Magdeburg Universität Graz Perugia Technologies Co-Chair: Vicente E. Boria, Universitat Co-Chair: Amelie Hagelauer, Technische Co-Chair: Dieff Vital, University of Illinois Co-Chair: Chinchun Meng, NYCU Politècnica de València Universität München at Chicago 10:10 Tu2A-1: A Novel e-Textile Body-Worn Tu2B-1: Direct-Coupled TE-TM Tu2C-1: Synthesis and Design of a Tu2D-1: A W-Band Stacked Frequency Antenna Array for Wireless Power **Dual-Mode Waveguide Cavities Highly Selective Band-5 SAW Filter** Quadrupler With A Dual Driven Core Using Cascaded DMS with Non-Uniform **Transfer and Energy Harvesting** Achieving 10.3% Drain Efficiency C. Tomassoni, Università di Perugia; Polarities Y. Jiang, Univ. of Manchester; Z. Zhang, S. Bastioli, RS Microwave; R. Snyder, RS Y. Mensah, Georgia Tech; S. Rao, Georgia Microwave; V. de la Rubia, Universidad Univ. of Manchester; X. Liao, Univ. of H. Tian, UESTC; Y. Dong, UESTC Tech; J. Teng, Georgia Tech; J. Cressler, Manchester; Z. Hu, Univ. of Manchester Politécnica de Madrid Georgia Tech 10:30 Tu2C-2: 23.8 GHz Acoustic Filter in Tu2A-2: A New Security and Tu2B-2: Practical Design of Waveguide Tu2D-2: A F-Band ×4 Frequency Identification Concept for SWIPT Multiplier Chip with High Spectral Purity **Filters with Quarter-Wavelength Periodically Poled Piezoelectric Film** Systems in IoT Applications **Resonators Implementing Transmission** Lithium Niobate with 1.52 dB IL and **Using Vertically Stacked Marchand Zeros Using Frequency-Variant** 19.4% FBW **Baluns and TF-MSL** T.E. Djidjekh, LAAS-CNRS; L. Sanogo, Couplings LAAS-CNRS; G. Loubet, LAAS-CNRS; S. Cho, Univ. of Texas at Austin; R. Weber, Fraunhofer IAF; S. Wagner, A. Sidibé, LAAS-CNRS; D. Dragomirescu, D. Rubio, UPV; S. Cogollos, UPV; O. Barrera, Univ. of Texas at Austin; Fraunhofer IAF; A. Leuther, Fraunhofer IAF; LAAS-CNRS; A. Takacs, LAAS-CNRS V.E. Boria, UPV; M. Guglielmi, UPV J. Kramer, Univ. of Texas at Austin; A. Tessmann, Fraunhofer IAF V. Chulukhadze, Univ. of Texas at Austin; T.-H. Hsu, Univ. of Texas at Austin; J. Campbell, Univ. of Texas at Austin; I. Anderson, Univ. of Texas at Austin; R. Lu, Univ. of Texas at Austin 10:50 Tu2A-3: A 124-144GHz Rectifier Tu2B-3: A Novel Six-Port Three-Way Tu2C-3: A Fin-Mounted A5-Mode Tu2D-3: A 43-84GHz, Wideband Frequency Doubler With a Symmetric. Achieving 22% RF-to-DC Conversion **Filtering Splitter-Combiner Network** Lithium Niobate Resonator at 27.58GHz Efficiency in 22nm FD-SOI CMOS Using a Lattice of Coupled Resonators with k² of 4.4%, Qp of 448, and FoM **AC-Terminated Transformer Balun Realized in Ridge Waveguides** Technology of 19.7 W. Lim, A. Moradinia, S. Lee, J.W. Teng, J. Fang, USTC; K. Yang, USTC; F. Lin, USTC; H. Tao, USTC; J. Chen, USTC; X. Kong, KIT; A.Ç. Ulusoy, KIT M.M. Fahmi, DRDC; J.A. Ruiz-Cruz, UPM; 11:00 C.T. Coen, N.E. Lourenco, J.D. Cressler, Georgia Tech R.R. Mansour. Univ. of Waterloo C. Zuo, USTC Tu2D-4: Strong Fundamental Rejection in Frequency Doublers at 220-260GHz Using a 250-nm InP HBT Process J.S.-C. Chien, E. Lam, J. Tao, J.F. Buckwalter, Univ. of California, Santa Barbara Tu2B-4: A Novel Trisection for Tu2A-4: Broadband High-Efficiency Tu2D-5: A Wideband Bi-directional Tu2C-4: A 56GHz Trilayer AIN/ScAIN/ Microwave Rectifier with Nonuniform Implementing Below-Passband AIN Periodically Poled FBAR Active Mixer for 5G Millimeter-Wave **Transmission-Line Input Matching for** Transmission Zeros in Evanescent-Mode Applications W. Peng, Univ. of Michigan; S. Nam, Univ. Waveguide Filters Harmonic Backscattering Applications Pei-Wen Wu, National Taiwan Univ.; of Michigan; D. Wang, Univ. of Michigan; L. Hüssen, RWTH Aachen Univ.; M.-D. M. Martinez-Mendoza, UPV; D. Smacchia, Z. Mi, Univ. of Michigan; A. Mortazawi, Jia-Wei Ye, National Taiwan Univ.; Zi-Hao 1:20 Wei, RWTH Aachen Univ.; R. Negra, RWTH Val Space Consortium; J.V. Morro, UPV; Univ. of Michigan Fu, National Taiwan Univ.; Yu-Teng Chang, Aachen Univ. P. Soto, UPV; J. Vague, UPV; M. Guglielmi, Yuan Ze Univ.; Kun-You Lin, National UPV; V.E. Boria, UPV Taiwan Univ. 11:30 Tu2B-5: Design of Multifunctional Tu2A-5: A 28GHz Band Highly Efficient Tu2C-5: Experimental Study of Tu2D-6: A Low Power 185 GHz Static GaAs Rectenna MMIC with EM Coupling **Periodically Poled Piezoelectric Film Filtering Power Divider in Coaxial CML Frequency Divider in SiGe HBTs** Lithium Niobate Resonator at Cryogenic Structure for an External Highly **Technology for Power Combining** Using Band-switching Technique in **Efficient Wire Antenna** 45nm PDSOI BiCMOS Applications Temperatures M. Kumar, G. Basavarajappa, K. Rawat, N. Sakai, Kanazawa Institute of J. Kramer, Univ. of Texas at Austin; H.-Y. Chien, Univ. of California, Los Angeles; C. Chen, Univ. of California, Los Technology; Y. Tondokoro, Kanazawa IIT Roorkee O. Barrera, Univ. of Texas at Austin;

Institute of Technology; A. Kobayashi, Kanazawa Institute of Technology; K. Noguchi, Kanazawa Institute of Technology; M. Tsuru, Kanazawa Institute of Technology; K. Itoh, Kanazawa Institute of Technology

11:50

38

Tu2B-6: Short-End Half-Wavelength **Four-Sections Coaxial Stepped** Impedance Resonators for Tx Space

Bandpass Filter

K. Kouny, J. Benedicto, J.-F. Favennec, A.B. Bernal, Lab-STICC (UMR 6285); M. Belhaj, ONERA; N. Fil, CNES; D. Pavan. CNES; E. Rius, Lab-STICC (UMR 6285)

S. Cho, Univ. of Texas at Austin;

V. Chulukhadze, Univ. of Texas at Austin; T.-H. Hsu, Univ. of Texas at Austin; R. Lu, Univ. of Texas at Austin

Angeles; R. Chen, Univ. of California, Los Angeles; J. Woo, Univ. of California, Los Angeles; S. Pamarti, Univ. of California, Los Angeles; M.-C.F. Chang, Univ. of California, Los Angeles; C.-K.K. Yang, Univ. of California, Los Angeles

IMS TECHNICAL SESSIONS 10:10 - 11:50 Tuesday, 18 June 2024 WALTER E. WASHINGTON

CONVENTION CENTER

Microwave Field, Device & Circuit Techniques	Passive Components	Active Components	Systems & Applications	Emerging Tec	hnologies & Applications
146C	147AB		143ABC		
Tu2E: Does Analog Photonics have a Role in 6G Systems and Beyond?	Tu2F: AI / ML For Transı Systems	mitter	Tu2G: Microwave-Based Based Solar Power	Space	
Chair: Siva Yegnanarayanan, <i>MIT Lincoln</i> Laboratory	Chair: Sudipto Chakraborty, Co-Chair: Adrian Tang, Jet P Laboratory	IBM ropulsion	SPECIAL SESSION		
Tu2E-1: Generation and Transport of mmWaves for the Next Generation Communication Applications	Tu2F-1: MP-DPD: Low-Com Mixed-Precision Neural Net Energy-Efficient Digital Pre Widebcard Deuros Amplificar	plexity works for -distortion of	Tu2G-1: (Space-based solar Power Transfer: The Airbus v V. Ziegler, Airbus	r) Wireless ⁄ision	10:10
S. S.J., <i>IIT Madras</i> ; B. Gopalan, <i>IIT Madras</i> ; D. Venkitesh, <i>IIT Madras</i>	Y. Wu, A. Li, M. Beikmirza, G. Technische Universiteit Delft Universiteit Leiden; L. de Vre C. Gao, Technische Universit	Singh, ;; Q. Chen, ede, M. Alavi, eeit Delft			10:20
Tu2E-2: TERA6G: Reconfigurable Transceivers Reaching into the Millimeter-Wave Range	Tu2F-2: IMS Deep Learning Generalized Synthesis of M Electromagnetic Structures for mmWave Power Amplific	Enabled ulti-Port s and Circuits ers	Tu2G-2: Toward an Ecosyste Wireless Energy from Earth and Back	em of to Space	10:30
G. Carpintero, UC3M; H. Avramopoulos, NTUA; D. de Felipe, Fraunhofer HHI; S. Nellen, Fraunhofer HHI; C. Roeloffzen, LioniX International; Z. Tegegne, PHIX; A. Alexiou, Univ. of Piraeus; J. Kokkoniemi, Univ. of Oulu; J. Costa-Requena, Cumucore; D. Kritharidis, Intracom Telecom; E. Yusta, Telefónica I+D	E.A. Karahan, Princeton Univ.; Z. Liu, Texas Instruments; K. Sengupta, Princeton Univ.		A. Hajimin, <i>Callech</i>		10:40
Tu2E-3: Ultrabroadband Indoor Optical Wireless Networks	Tu2F-3: Transfer Learning A Fast Design Migration Over Nodes: A Study on Transfor	ssisted Technology	Tu2G-3: Space Based Solar Iapan	Power in	10:50
A. Nirmalathas, Univ. of Melbourne; T. Song, Univ. of Melbourne; S. Edirisinghe, Jayawardenapura University; J. Li, Shandong Normal University; C. Ranaweera, Deakin University; K. Wang, Shandong Normal University; C. Lim, Univ. of Melbourne	Network Chenhao Chu, ETH Zurich; Yu ETH Zurich; Hua Wang, ETH 2	uhao Mao, Zurich	N. Shinohara, <i>Kyoto Univ.</i>		11:00
Tu2E-4: Optical Fronthauling and mm-Wave/Sub-THz Signal Generation Techniques for the 6G and Beyond 6G Wireless Systems	Tu2F-4: Optimizing Direct L Neural Network Digital Prec Through the Lottery Ticket I Agent	earning listortion lypothesis	Tu2G-4: ESA's Solaris Initia results from recent Concep Space-based Solar Power S S. Vijendran, ESA	tive and t studies on ystems	11:10
A. Delmade, Dublin City University; L. Barry, Dublin City University	E. Loebl, Technion; N. Ginzbe Univ.; E. Cohen, Technion	erg, Tel-Aviv			11:20
			Tu2G-5: POWER: Persistent Wireless Energy Relay, and pathway to Energy Web Don P. Jaffe, DARPA	Optical DARPA's hinance	11:30
					11:40
					11:50

WALTER E. WASHINGTON CONVENTION CENTER

STARTUP PANEL SESSION 11:00 - 12:00

Tuesday, 18 June 2024

MicroApps Theater, Booth 2159

Voice of the Founder Industry Panel Session

Past and present founders share insights, investor due diligence is unraveled, and the art of pitching and storytelling is explored. Hear directly from StartUp Founders at various stages of their journey; from early stage through generating revenue, to successfully exiting and launching new startups.

MODERATORS:

Chris Marki, CEO and Chief Technologist, Marki Microwave

James Buckwalter, Co-Founder, Chief Design Officer PseudolithIC, Inc.

PANELISTS:

Founder of MixComm (acquired by Sivers)

Paul Blount, Founder of Custom MMIC (acquired

by Qorvo)

Gabriel Rebeiz, Founder of Spectrabeam (acquired by Renasas) and ExtremeWaves

John Richardson, Founder of XMicrowave (acquired by Quantic Electronics)

Reception to follow in the StartUp Networking Lounge

RFIC PANEL SESSION

12:00 - 13:30 Tuesday, 18 June 2024 Room: 207AB

PL3: AI in RFIC Design: Opportunities, Threats, and Limitations

PANEL ORGANIZERS:

Kaushik Sengupta, Princeton Univ. Oren Eliezer, Samsung Semiconductor, Inc.

PANELISTS:

Daivd Pan, Univ. of Texas at Austin Jian Yang, Synopsys, Inc. Michael Thompson, Cadence Design Systems, Inc. Silvia Zhang. Northeastern University Tom Kazior, Defense Advanced Research Projects Agency ABSTRACT: The growth in generative AI has, naturally, raised the question of its impact on RFIC design. The latter has been traditionally regarded as somewhat of a black art, requiring the 'magic' of human intuition and creativity. But is RFIC design really so, or will AI be able to automate large portions of the design process in the future? Are the days of hand-crafted RFIC design limited? Will AI replace design engineers or only augment their capabilities, to some extent? This lunch time panel, with both industry and academic experts, will attempt to unentangle the impact of AI in RFIC design.

IMS PANEL SESSION

12:00 - 13:30

Tuesday, 18 June 2024

Room: 206

PL5: Will Long Range WPT Become a Reality?

PANEL ORGANIZERS AND MODERATORS: Nuno Carvalho, Instituto De Telecomunicacoes

Jasmin Grosinger, University of Graz

PANELISTS:

Greg Kushnir, EMROD Dinesh Kithany, WAWT Chris Davlantes, REACHPOWER Jennifer Grenz, Ossia Inc. Volker Ziegler, Airbus Jason Gill, Powercast Co

ABSTRACT: This panel will bring together industry, government laboratories, and academia to discuss long-range WPT links. The koto will be: Will Long Range WPT become a reality? What are the bottlenecks and limitations, and what has been done already? Which energy efficiencies are foreseen? It is expected to have a diverse group of researchers in different areas talking about these topics and to create enough discussion in the room to allow microwave enthusiasts and practitioners to foresee where to focus their interests and research strategies to work towards a future of WPT.

RFIC TECHNICAL SESSIONS 13:30 - 15:10

TUESDAY

IMS TECHNICAL SESSIONS 13:30 - 15:10

WALTER E. WASHINGTON

Name Name <th< th=""><th></th><th></th><th></th><th>10:00 10:</th><th>10</th><th>rucsuay,</th><th></th><th>CONVENTION CENTER</th></th<>				10:00 10:	10	rucsuay,		CONVENTION CENTER
150AB 145AB 145AB 145AB Tu32.1: Internotion: Special Segurida 133: Advanced Filter Synthesis Collar: Simone Bastiol, IS Morenau Regivina 145AB Tu3B: Advanced Filter Synthesis Collar: Simone Bastiol, IS Morenau Regivina 145AB Tu3B: Advanced Filter Synthesis Collar: Simone Bastiol, IS Morenau Regivina Tu3B: Collar: Collar: Simone Bastiol, IS Morenau Regivina Tu3B: Collar Simone Bastione Regivina <thtu3b: collar="" is="" morenau<br="" simonebastiol,="">R</thtu3b:>	Microwav	e Field, Device & Circuit Techniques	Passive Componen	ts Active Components	Systems	s & Applications	Emerging Technologies & App	Dications Focus & Special Sessions
Bits: Interventing Reymold Shiper Regiverad Table: Advanced Filter Synthesis (Synthesis) Table: Synthes		150AB		145AB			146A	146B
Numerican Chair: Manage Mana		Tu3A: In Memoriam: Special Session Honoring Reynold Shi	g <mark>eru</mark> Tu3B: /	Advanced Filter Synthesi ques	s	Tu3C: Sub-TH and Systems	Iz and THz Circuits	Tu3D: Building Blocks for Advanced mm-Wave Systems
Point Int I Text I TexI		Kagiwada	Chair: N Co-Cha	Iing Yu, SUSTech ir: Simone Bastioli, <i>RS Micro</i>	wave	Chair: Hamed F University Co-Chair: Chur University	Rahmani, New York I-Hsing Li, National Taiwan	Chair: Kenneth Mays, <i>Boeing</i> Co-Chair: Wooram Lee, <i>Pennsylvania</i> State University
Communication Table 1: Synthesis of Underdetermined Unders within a Link and the Amage Unders Within a Link and the Amagee Unders Within a Link and the Amagee Unders Within a Link and the Amagee Unders Withe Amagee Unders Within a Link Amagee Unders	13:3							
100 101 102 103 <td>ö</td> <td>Talk 1 E. Niehenke, <i>Niehenke Consulting</i></td> <td>Tu3B-1 Filter To Nodes v</td> <td>Synthesis of Underdetermin pologies with Nonresonatin vithin a Limited Range</td> <td>ned g</td> <td>Tu3C-1: An Ene D-band Point-to CMOS TX and F</td> <td>ergy Efficient 56-Gb/s o-point Link based on RX Modules and</td> <td>Tu3D-1: Design of a W-Band Transformer-Based Switchless Bidirectional PALNA in 65-nm CMOS</td>	ö	Talk 1 E. Niehenke, <i>Niehenke Consulting</i>	Tu3B-1 Filter To Nodes v	Synthesis of Underdetermin pologies with Nonresonatin vithin a Limited Range	ned g	Tu3C-1: An Ene D-band Point-to CMOS TX and F	ergy Efficient 56-Gb/s o-point Link based on RX Modules and	Tu3D-1: Design of a W-Band Transformer-Based Switchless Bidirectional PALNA in 65-nm CMOS
Image: Specific state in the specific state state in the specific state in the specific state in the specific	13:40		Y. Zeng,	SUSTech; M. Yu, SUSTech		J.L. Gonzalez-Jir A. Siligaris, CEA Grenoble Alpes CEA-LETI; P. Cor Cassiau, CEA-L A. Clemente, CE	nenez, CEA-LETI; I-LETI; A. Hamani, <i>Univ.</i> ; F. Foglia Manzillo, urouve, CEA-LETI; N. ETI; C. Dehos, CEA-LETI; EA-LETI	CC. Chien, National Taiwan Univ.; Y. Wang, National Taiwan Univ.; YS. Ng, National Taiwan Univ.; CC. Chiong, Academia Sinica; H. Wang, National Taiwan Univ.
Solution Taik 2 Taik 2 Taik 3 Taik 4 Taik 5 Taik 6 Taik 5 Taik 6 Taik 7 Taik 7 Taik 7 Taik 7 Taik 7<	13:							
 Talk 3 Talk 4 Talk 5 Talk 4 Talk 5 Talk 6 Talk 6 Talk 6 Talk 6 Talk 6 Talk 7 Talk 6 Talk 6 Talk 7 Talk 6 Talk 7 Talk 8 Talk 8 Talk 8 Talk 8 Talk 9 Talk 9 Talk 9 Talk 1000000000000000000000000000000000000	50	Talk 2 A. Oki, Northrop Grumman Corp.	Tu3B-2: Coupled Commo	Circuit Model Extraction of I-Resonator Diplexers with n Resonator from Two-Port		Tu3C-2: An FM Oscillator-Base Detector in 16	CW-Modulated- ed Wide-Band Terahertz 111 FinFET	Tu3D-2: 39 GHz Transmit/Receive Front-End-Module With Back-Off Efficiency Enhancement for 5G Communication
Image: Solution of the soluti	14:00		Y. Chen, Hung, C	CUHK; H. Meng, CUHK; W.H. UHK; J. Liu, CUHK; KL. Wu, C	СИНК	J. Zhou, <i>Univ. of</i> C. Chen, <i>Univ. o</i> MC.F. Chang, <i>Angele</i> s	California, Los Angeles; f California, Los Angeles; Univ. of California, Los	H. Yu, <i>Univ. of Waterloo</i> ; M. Hazer Sahlabadi, <i>Univ. of Waterloo</i> ; S. Boumaiza, <i>Univ. of Waterloo</i>
 Talk 4 P. Stacker, <i>Dura Sales of Southern California</i> Talk 5 Talk 6 Talk 5 Talk 6 Talk 5 Talk 6 Talk 6 Talk 7 Talk 7 Talk 7 Talk 8 Talk 8 Talk 8 Talk 8 Talk 9 Talk 9	14:10	Talk 3 T. Lee, Boeing, Past President	Tu3B-3: 3-D Pol	Synthesis Design of Wideba arization-Rotating Spatial Fi	and Iter	Tu3C-3: 235-G Multiplier Chai	Hz Amplifier-Frequency- n with Optimal Harmonic	Tu3D-3: A Compact 28-GHz Transmitte Front-End with Co-Optimized Wideban
420 14:0 Taik 4 Tu3B-4: Analytical Synthesize and Dimensioning of PDC Waveguide Filters Tu3C-5: Micromachized Aub-Thic Zonssover Switch Tu3D-4: Broadband Low-Noise Ka-Band Front-End MMIC in a 0.15-µm Gal-tonsite Aub-Thic Zonssover Switch 740 Taik 4 Tu3B-4: Analytical Synthesize and Dimensioning of PDC Waveguide Filters Tu3C-5: Micromachized Waveguide Filters Tu3D-4: Broadband Low-Noise Ka-Band Front-End MMIC in a 0.15-µm Gal-tonsite Aub-Thic Zonssover Switch 741 Taik 5 Tu3B-5: Design of Monoblock Antenna-Loaded Bandpass Filters with General Status Thic Zonssover Switch Tu3D-5: A Ka-Band Low-Power Ultra-Compact Recommonder IAF; P. Neininger, Fraunhofer IAF; P. Neininger, Fraunhofer IAF; P. Neininger, Fraunhofer IAF; P. Neininger, Jack Status Thic Zonssover Switch 740 Taik 5 Tu3B-5: Design of Monoblock Antenna-Loaded Bandpass Filters with General Status Thic Zonssover Switch Tu3D-5: A Ka-Band Low-Power Ultra-Compact Reconfigurable Amplifer with Reverse Status The Zondo Complex-Loaded Pilters 750 Taik 5 Tu3B-5: Design of Monoblock Antenna-Loaded Bandpass Filters with General Switch Tu3C-6: Sub-Thiz Photoconductive Evance-th Mode Waveguide SPST Switch 750 Taik 5 Tu3B-5: A Ka-Band Low-Power Ultra-Complex-Loaded Pilters Tu3D-6: A90-1000Hz Vector Multi-Element Phased Array Transceivers 760 Taik 5 Tu3B-5: Chen, CUHK; Y. Chen, CUHK; K-L. Wu, CUHK Tu3C-6: Sub-Thiz Photoconductive Evance-th Mode Waveguide SPST Switch Tu3D-6: A 90-1000Hz Vector Modulator 7-Bit Phase Shifter with Wolatege Summation Topology <			T. Wei, N NJUPT; I Macau	IJUPT; W. Zhang, NJUPT; H. Li 3. Li, NJUPT; L. Zhu, University	, y of	CH. Lin, CS.	Lin, CH. Li, National	18.5-dBm P1dB and 1.0-W/mm ² Powe Density for Phased Array Systems
143 Talk 4 Part A TuBB-4: Analytical Synthesize and Dimensioning of FDC Waveguide Filters California TuBB-4: Analytical Synthesize and Dimensioning of FDC Waveguide Filters Y. Yang, Xidian Univ.; Q. Wu, Xidian Univ.; B. Liu, Xidian Univ.; W. Yu, SUSTech TuBB-4: Consource Switch Mathematical Consource Switch A. Karimi, KTH; U. Shah, KTH; J. Oberhammer, KTH TuB-4: Broadband Low-Noise Ka- Band Front-End MMIC in a 0.15-µn GaN-on-EiC HEMT Technology 140 TuB TuBB-5: Design of Monoblock Antenna- Loaded Bandpass Filters with General Synthesis Theory of Complex-Loaded CulfW TuB-5: Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Switch TuB-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier With Reverse Bypass Mode for Multi- Element Phased Arary Transceivers Switch 150 TuB-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier With Reverse Bypass Mode for Multi- Element Phased Arary Transceivers Switch TuB-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier With Reverse Bypass Mode for Multi- Element Phased Arary Transceivers Switch 150 TuB-5: Object With Y. Chen, CUHK; Y. Chen, CUHK; K-L. Wu, CUHK TuB-6: Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Switch TuB-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier With Reverse Bypass Mode for Multi- Element Phased Arary Transceivers Switch 150 TuB-6: Sub-THZ Photoconductive Evanescent-Mode Univ:; D. Peroulis, Purdue Univ. TuB-5: A Solo - 100GHz Vector Modulator 7- Bit Phase Shifter with Voltage Summation Topology 16 TuB-6: Sub-THZ Phase Shifter with Voltage Summation Topology TuB-7: Al-Within; E. Socher,	4:20					Taiwan Univ. Tu3C-4: A 240-	GHz Wideband LNA with	Z. Liu, HKUST; L. Wang, HKUST; H. Fallah HKUST; Z. Chen, SCUT; C.P. Yue, HKUST
120 Talk 4 P. Stacker, Dura Sales of Southern California Tu3B-4: Analytical Synthesize and Dimensioning of FDC Waveguide Filters Y. Yang, Xidian Univ.; W. Yu, SUSTech Tu3C-5: Micromachined Waveguide- Integrated Sub-THz Crossover Switch Tu3D-4: Broadband Low-Noise Ka- Band Front-End MMIC in a 0.15-µm Galv-on-SiC HEIMT Technology 120 Talk 5 Tu3B-5: Design of Monoblock Antenna- Loaded Bandpass Filters with General Synthesis Theory of Complex-Loaded Filters Tu3C-6: Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Switch Tu3D-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier with Reverse Bypas Mode for Multi- Einennt Phased Array Transceivers: N. Tan, CUHK; Y. Chen, CUHK; KL. Wu, CUHK Tu3C-6: Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Switch Tu3D-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier with Reverse Bypas Mode for Multi- Einennt Phased Array Transceivers: N. Tan, CUHK; Y. Chen, CUHK; KL. Wu, CUHK 100 Tu3D-6: A Sub-Thz Photoconductive Filters Tu3D-6: A Sub-Thz Photoconductive Evanescent-Mode Waveguide SPST Switch Tu3D-6: A Sub-Thz Photoconductive Filters Tu3D-6: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier with Reverse Bypas Mode for Multi- Einennt Phased Array Transceivers 100 To3D-6: Sub-Thz Photoconductive Filters Tu3D-6: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier with Reverse Bypas Mode for Multi- Einennt Phased Shifter with Voltage Summation Topology 1100 Tu3D-6: A Sub-Thz Phase Shifter with Voltage Summation Topology T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.;						High-Speed Tra	insistors in 40-nm CMOS	
30 Talk 4 P. Stacker, Dura Sales of Southem California Tu3B-4: Analytical Synthesize and Dimensioning of FDC Waveguide Filters Y. Yang, Xidian Univ.; Q. Wu, Xidian Univ.; B. Liu, Xidian Univ.; M. Yu, SUSTech Tu3C-5: Micromachined Waveguide Integrated Sub-THz Crossover Switch 740 Talk 5 750 Talk 5 760 Tu3B-5: Design of Monoblock Antenna- Loaded Bandpass Filters with General Synthesis Theory of Complex-Loaded Filters 761 Tu3B-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier 762 Tu3B-5: Design of Monoblock Antenna- Loaded Bandpass Filters with General Synthesis Theory of Complex-Loaded Filters 763 Tu3B-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier 764 Tu3B-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier 765 JK McKinney, Dura Sales of Southem California Tu3B-5: Complex-Loaded Filters 766 Talk 5 Tu3D-6: Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Number Interve of Complex-Loaded 767 Tu3D-6: A 90-100GHz Vector Modulator 7-Bit Phase Shifter with Voltage Summation Topology 768 Tu3D-6: A 90-100GHz Vector Modulator 7-Bit Phase Shifter with Voltage Summation Topology 769 Tu3D-6: A 90-100GHz Vector Modulator 7-Bit Phase Shifter with	14:					YK. Chen, WZ National Taiwar	Y. Su, YF. Tseng, CH. Li, 19 Univ.	
California Y. Yang, Xidian Univ.; Q. Wu, Xidian Univ.; A. Karimi, KTH; U. Shah, KTH; J. Oberhammer, KTH 140 B. Liu, Xidian Univ.; M. Yu, SUSTech J. Oberhammer, KTH F. Thome, Fraunhofer IAF; S. Krause, Fraunhofer IAF;	30	Talk 4 P. Stacker, Dura Sales of Southern	Tu3B-4 Dimens	Analytical Synthesize and ioning of FDC Waveguide File	ters	Tu3C-5: Micron Integrated Sub	nachined Waveguide- THz Crossover Switch	Tu3D-4: Broadband Low-Noise Ka- Band Front-End MMIC in a 0.15-µm GaN-on-SiC HEMT Technology
 In the second sec	14:40	California	Υ. Yang, B. Liu, λ	Xidian Univ.; Q. Wu, Xidian Ur ïdian Univ.; M. Yu, SUSTech	niv.;	A. Karimi, <i>KTH</i> ; J. Oberhammer	U. Shah, <i>KTH</i> ; ; <i>KTH</i>	F. Thome, Fraunhofer IAF; P. Neininger, Fraunhofer IAF; S. Krause, Fraunhofer IAF; P. Brückner, Fraunhofer IAF; R. Quay Fraunhofer IAF
Talk 5 JK McKinney, Dura Sales of Southern California 150 150 <tr< td=""><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	14							
1. Jones, Purale Oniv., D. Peroulis, Purale X. Tan, CUHK; Y. Chen, CUHK; KL. Wu, CUHK Nones, Purale Oniv., D. Peroulis, Purale Y. Lee, H. Lim, D. Chun, BW. Min, Yonsei Univ. Tu3D-6: A 90-100GHz Vector Modulator 7-Bit Phase Shifter with Voltage Summation Topology T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.	1:50	Talk 5 JK McKinney, Dura Sales of Souther California	n Loaded Synthes Filters	Design of Monoblock Anter Bandpass Filters with Gene Sis Theory of Complex-Loade	nna- ral d	Tu3C-6: Sub-TH Evanescent-Mo Switch	Iz Photoconductive de Waveguide SPST	Tu3D-5: A Ka-Band Low-Power Ultra- Compact Reconfigurable Amplifier with Reverse Bypass Mode for Multi- Element Phased Array Transceivers
Tu3D-6: A 90-100GHz Vector Modulator 7-Bit Phase Shifter with Voltage Summation Topology T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.; E. Socher,	15:0		X. Tan, C CUHK	CUHK; Y. Chen, CUHK; KL. W	u,	1. Jones, Purdue Univ.	e Univ.; D. Peroulis, Purdue	Y. Lee, H. Lim, D. Chun, BW. Min, Yonsei Univ.
T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.	0							Tu3D-6: A 90–100GHz Vector Modulator 7-Bit Phase Shifter with Voltage Summation Topology
	15:10							T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.

42

IMS TECHNICAL SESSIONS

Microwave Field, Device & Circuit Techniques

Passive Components Active Components

13:30 - 15:10 Tuesday, 18 June 2024 Systems & Applications Emerging Technologies & Applications

WALTER E. WASHINGTON CONVENTION CENTER

Focus & Special Sessions

146C

Tu3E: Generation. Amplification. and Radiation of mm-Wave and sub-THz Signals Using Microwave **Photonic and Electronic Techniques**

Chair: Kamran Entesari, Texas A&M University

Co-Chair: Siva Yegnanarayanan, MIT Lincoln Laboratory

Tu3E-1: Photonic Generation of Tunable Sub-THz Signals Using Two Semiconductor Lasers with Highly **Asymmetric Mutual Coupling**

C.-H. Tseng, National Cheng Kung Univ.; B.-K. Liao, National Cheng Kung Univ.; S.-K. Hwang, National Cheng Kung Univ.

Tu3E-2: Efficient Synthesis of Broadband Linear Frequency-Modulated Quadrature Signals for **Coherent Electro-Optical Sensor Systems**

M. Schmidt. FAU Erlangen-Nürnberg: C. Carlowitz, FAU Erlangen-Nürnberg

Tu3E-3: Photonic Synthesis of Continuously Tunable (5–170GHz) **Microwave Signals with Frequency Independent Phase Noise**

A. Kassem, Univ. College London; Z. Zhou, Univ. College London; I. Darwazeh, Univ. Čollege London; Z. Liu, Univ. College London

Tu3E-4: Photonic Microwave Amplification Using Optically Injected Semiconductor Lasers at Stable Locking Dynamics

G.-T. Lu, National Cheng Kung Univ.; C.-H. Tseng, National Cheng Kung Univ.; S.-K. Hwang, National Cheng Kung Univ.

Tu3E-5: On-Chip Terahertz Topological **Filter Antenna for 6G**

S. Kumar, NTU; N. Navaratna, NTU;

A. Alphones, NTU; R. Singh, NTU

147AB

Tu3F: Wireless Solutions for **Autonomous Sensors**

Chair: Mohammad H. Zarifi, University of British Columbia

Co-Chair: Jasmin Grosinger, Technische Universität Graz

Tu3F-1: Integrated Dual-Mode Energy Harvesting for Self-Sustaining Sensor Nodes: Synergy of Solar and RF Energies

Y. Qaragoez, KU Leuven; S. Pollin, KU Leuven; D. Schreurs, KU Leuven

13:50

13:30

Tu3F-2: Augmented Reality-Assisted Battery-Less Microwave-Based Sensors for Smart Health Monitoring of Coatings

V. Balasubramanian, Univ. of British Columbia; M.H. Zarifi, Univ. of British Columbia

14:10

14:30

14:50

Tu3F-3: Spatial Multiplexing Technique for MIMO Backscatter Communication

H. Jeong, Pusan National Univ.; H. Kim, Pusan National Univ.; N. Ha, Pusan National Univ.; S. Kim, Pusan National **Univ**

Tu3F-4: A Stand-Alone Moisture Content Sensor Based on a Loaded Self-**Oscillating Antenna**

A. Di Florio Di Renzo, Univ. of Bologna; S. Trovarello, Univ. of Bologna; O. Afif, Univ. of Bologna; L. Franceschelli, Univ. of Bologna: M. Tartagni, Univ. of Bologna: D. Masotti, Univ. of Bologna; A. Costanzo, Univ. of Bologna

15:10

The IEEE MOVE truck is deployed to respond

to hardest hit disaster areas that frequently have no power or communications, MOVE can quickly set up temporary operations and provide the power and communications required to initiate services to the people affected by the disaster. These temporary emergency relief provisions help people stay connected and make sure they can access the help they need. Services include cell phone charging, wi-fi access, and lighting to disaster victims. Come see the application of RF expertise!

Location:	IMS Exhibit Floor, at the Societies (Booth 1605)	Pavilion,
Hours:	Tuesday, 18 June 2024	09:30-17:
Carl Sugar	Wednesday, 19 June 2024	09:30-18:
F. Barro	Thursday, 20 June 2024	09:30-15:
		AL PROPERTY OF

00 00

00

STUDENTS | INDUSTRY | ACADEMIA RFIChat

17:00 - 18:30 | Tuesday, 18 June 2024 | 207AB

Burning Career Questions? Come Chat with the Pros!

Join us for an engaging discussion (and food!) at the RFIChat event. Students and experts from academia, industry, and research will converge for an open discussion on RFIC careers and future trends. Bring your questions and come learn how to kickstart, advance, and optimize your career path for variables such as innovation, work-life balance, positive impact, financial stability and more. Our panelists promise to offer invaluable insights (secrets !?) into the unique landscapes of academia and industry, so come meet them and have a chat!

Organizers: Spyridon Baltsavias, Apple, Travis Forbes, Sandia National Laboratories, Amin Arbabian, Stanford University

Panelists: Ali Hajimiri, Caltech, Jennifer Kitchen, Arizona State University, Kostas Doris, NXP Semiconductors, Shahriar Shahramian, Nokia Bell Labs, Margaret Szymanowski, Crane A&E

				WALTER	E. W	ASHINGTON CONVENTION CENTER	
MICF	ROAPPS		09:30 - 17:00	Tuesday, 18 June 2024		MicroApps Theater, Booth 2159	
SESSION							
CODE	TIME	TITLE			SPE/	AKER/S, AFFILIATION	
TUMA1	09:30 - 9:45	Overview of High D Structures	k Circuit Materials and The	ir Use with Different Circuit	John	Coonrod, Rogers Corporation	
TUMA2	09:45 - 10:00	2d Scanner for Sur Emerging LTCC an	rface-Wise Measurements o d ULTCC Materials	of Complex Permittivity Of	Marz	rena Olszewska-Placha, QWED Sp. z o.o	
TUMA3	10:00 - 10:15	Application of Mic Ion-Implanted Bat	rowave Imaging Techniques tery Materials	for the Characterization of	Malg	jorzata Celuch, <i>QWED Sp. z o.o.</i>	
TUMA4	10:15 - 10:30	Converting dBFS a	nd dBm for Accurate Signal	Measurements	Robi	n Getz, MathWorks	
TUMA5	10:30 - 10:45	Frequency Finesse	: The Art of Synchronized R	F Spectrum Analysis	Aleja	ndro Buritica, Tektronix	
TUMA6	10:45 - 11:00	Full XYZ Compensa Placement Accura	ated Motion for Optimal on cy	Wafer Pad	Gavi	n Fisher, FormFactor Inc.	
TUMA7	TUMA7 11:00 - 12:00 StartUp Program: Voice of the Founder Industry Panel Session Moderators: James Buckwalter, Co-Founder and Chief Design Officer, PsuedolithIC, Inc.; Chris Marki, CEO and Chief Technologist, Marki Microwave Panelists: Paul Blount, Founder of Custom MMIC (acquired by Qorvo); Harish Krishnaswamy, Founder of MixComm (acquired by Sivers); Gabriel Rebeiz, Founder of Spectrabeam (acquired by Renasas) and ExtremeWaves; John Richardson, Founder of XMicro- wave (acquired by Quantic Electronics)						
TUMA8	12:00 - 12:15	Measurement of R Interferometric Me	esidual Phase Noise of Amp easurement Technique	olifiers at 80 GHz Using	Wolf	gang Wendler, Rohde & Schwarz	
TUMA9	12:15 - 12:30	Noise Figure Measurement in the 90 GHz Range Using a Noise Source and Harmonic Mixers in Combination with a Spectrum Analyzer			Kay-Uwe Sander, Wolfgang Wendler, Rohde & Schwarz		
TUMA10	12:30 - 12:45	RF & Microwave Test of Printed-Circuit Board Assemblies Using Spring- Contacts and Probes		Matthias Zapatka, Ingun USA, Inc.			
TUMA11	12:45 - 13:00	Screening of the Mmwave Signal Loss Properties of Copper Foils without the Need for Test Circuit Manufacturing		Malgorzata Celuch, <i>QWED</i> Sp. z o.o.			
TUMA12	13:00 - 13:15	The Wideband Vec	tor Channel Analyzer — New	Features And Applications	Tom Costello, Astronics Test Systems		
TUMA13	13:15 - 13:30	Trigger Tactics: Re	volutionizing Real-Time Spe	ectrum Analysis	Aleja	ndro Buritica, Tektronix, Inc.	
TUMA14	13:30 - 13:45	A New Approach to	Load Pull Measurements		Markus Lörner, Rohde & Schwarz		
TUMA15	13:45 - 14:00	How to Perform 80 Measurements an	OMHz (8ccx100mhz) 256Q d What Does It Mean for You	AM Phased Array Direct DPD ur Linearization Efforts?	Fabri <i>Gmb</i>	icio Dourado, Rohde & Schwarz, H & Co KG	
TUMA16	14:00 - 14:15	Pulser Plus: A Com Power Amplifiers	plete Solution for Sequenc	ing and Biasing GaN Radar	Eam	on Nash, Analog Devices	
TUMA17	14:15 - 14:30	Flexible and Power Systems Compose	rful Environment For Modeli d Of Multiple Elements In W	ng Complex Microwave /IPL-D Suits	Bran	islav Ninkovic, WIPL-D d.o.o.	
TUMA18	14:30 - 14:45	Enablement of Fou Expands Functiona	indry-Approved PDKs for Mi ality to Silicon MMIC Desigr	crowave Design Platform Iers	Paul	Sibrell, Dustin Hoekstra, Tektronix	
TUMA19	14:45 - 15:00	Frontiers of Flexibi	ility: Pioneering Radar with	Custom Waveform Generation	Aleja	ndro Buritica, Tektronix, Inc.	
TUMA20	15:00 - 15:15	Radar Cross Section	on Analysis for Target Syste	m-Level Simulation	Vishv	wanath lyer, MathWorks, Inc.	
TUMA21	15:15 - 15:30	Tackling The FR3 I and Enabling Tech	mplementation Challenges nologies	: Study of Radio Architectures	Rui N	/la, Peter Bacon, pSemi	
TUMA22	15:30 - 15:45	Dynamic, Multi-As	set Scenario Analysis In Ma	itlab	Mike	McLernon, MathWorks	
TUMA23	15:45 - 16:00	Matlab and the Ph	aser Development Kit		Robi Devid	n Getz, <i>MathWorks;</i> Sam Ringwood, <i>Analog</i> ces	
TUMA24	16:00 - 17:00	IMS Executive Forum: A&D Semiconductor to Systems Trends Moderator: Sanjay Raman, Dean of Engineering, University of Massachusetts Amherst Panelists: Nick Kolias, Principal Engineering Fellow, Raytheon; Tim Lee, Technical Fellow, Boeing; Bryan Goldstein, President, Analog Devices Federal, Vice President, Aerospace and Defense Group, Analog Devices; Tom Kole, Vice President of Sales and Marketing, Integra Technologies; Dean White, Director, Defense and Aerospace Market Strategy, Qorvo					

Sponsored By:

ROHDE & SCHWARZ Make ideas real

WALTER E. WASHINGTON CONVENTION CENTER

IMS EXECUTIVE FORUM

16:0<u>0 - 17:00</u>

Tuesday, 18 June 2024

MicroApps Theater, Booth 2159

A&D Semiconductor to Systems Trends

This panel of RF/microwave device and system company executives will discuss current trends in semiconductor technology and how they affect system design and performance. New types of compound semiconductor technology, AI integration, heterogeneous integration, chiplets, 3D packaging, new thermal materials and other related topics will be discussed including how these advancements affect system architecture and improve SWaP-C.

MODERATOR:

PANELISTS:

Sanjay Raman,Nick Kolias, PrincipalDean of Engineering,Engineering Fellow,University of Massachu-Raytheonsetts AmherstSette Amherst

Tim Lee, Technical Fellow, Boeing

Bryan Goldstein, President, Analog Devices Federal, Vice President, Aerospace and Defense Group, Analog Devices

Tom Kole, Vice President of Sales and Marketing, Integra Technologies

Dean White, Director-Defense and Aerospace Market Strategy, Qorvo

Sponsored by:

IMS STUDENT PAPER COMPETITION

THIS YEAR'S IMS STUDENT PAPER COMPETITION FINALISTS:

Tu2C-2 23.8 GHz Acoustic Filter in Periodically Poled Piezoelectric Film Lithium Niobate with 1.52 dB IL and 19.4% FBW

Student Finalist: Sinwoo Cho, *University of Texas at Austin* Advisor: Ruochen Lu, *University of Texas at Austin*

Tu1A-3 A 24-GHz 4-Element Multi-Beam Wireless Energy Harvesting Array with Class-F Rectifiers Achieving 51.5% PCE

Student Finalist: Mohsen Ghorbanpoor, Eidgenössische Technische Hochschule Zürich

Advisor: Hua Wang, ETH Zurich

Tu3C-5 Micromachined Waveguide-Integrated Sub-THz Crossover Switch Student Finalist: Armin Karimi, *KTH Royal Institute of Technology* Advisor: Joachim Oberhammer, *KTH Royal Institute of Technology*

Tu4D-2 A 37-43.5-GHz Fully-Integrated 16-element Phased-Array Transceiver with 64-QAM 7.2-Gb/s Data Rates Supporting Dual-Polarized MIMO Student Finalist: Xin Chen, Southeast University Advisor: Lianming Li, Southeast University

Tu4D-3 A 60-GHz Highly-Reused Joint Radar-Communication Transceiver with Reconfigurable Dual-Mode Gilbert Cells in 65-nm CMOS Student Finalist: Lin Lu, Southeast University Advisor: Lianming Li, Southeast University We3E-1 Beyond Planar: An Additively Manufactured, Origami-Inspired Shape-Changing, and RFIC-Based Phased Array for Near-Limitless Radiation Pattern Reconfigurability in 5G/mmWave Applications Student Finalist: Hani Al Jamal, *Georgia Institute of Technology*

Advisor: Manos M. Tentzeris, Georgia Institute of Technology

We3C-3 Decade-Bandwidth RF-Input Pseudo-Doherty Load Modulated Balanced Amplifier Using Signal-Flow-Based Phase Alignment Design Student Finalist: Pingzhu Gong, *University of Central Florida* Advisor: Kenle Chen, *University of Central Florida*

We2D-3 Fully Wireless Coherent Distributed Phased Array System for Networked Radar Applications

Student Finalist: Jason Merlo, *Michigan State University* Advisor: Jeffrey Nanzer, *Michigan State University*

Th1D-3 A 1.6 mW Cryogenic SiGe LNA IC For Quantum Readout Applications Achieving 2.6 K Average Noise Temperature from 3–6 GHz Student Finalist: Zhenjie Zou, *University of Massachusetts, Amherst* Advisor: Joseph Bardin, *University of Massachusetts Amherst*

Th1D-4 A 6mW Cryogenic SiGe Receiver IC For High-Fidelity Qubit Readout Student Finalist: Randy Kwende, *University of Massachusetts, Amherst* Advisor: Joseph Bardin, *University of Massachusetts, Amherst*

IMS TECHNICAL SESSIONS 15:40 - 17:00 Tuesday, 18 June

202/

WALTER E. WASHINGTON

crowa	e Field, Device & Circuit Techniques Passiv	e Components Active Components Sys	stems & Applications Emerging Technologies & Applications	oplications Focus & Special Sessions
	150AB	145AB	146A	146B
	Tu4A: Emerging Passive Multiport Components	Tu4B: Reconfigurable Filters and Passive Devices	Tu4C: mm-Wave Technology Opportunities and Challenges for 5G/6G Applications	Tu4D: Advanced mm-Wave Transceiver Subsystems
	Chair: Bayaner Arigong, FAMU-FSU Co-Chair: Hualiang Zhang, UMass Lowell	Chair: Julien Lintignat, <i>XLIM (UMR 7252)</i> Co-Chair: Charles F. Campbell, <i>Qorvo</i>	Chair: Jeong-sun Moon, HRL Laboratories	Chair: Mahdi Javid, Qorvo Co-Chair: Payam Heydari, University of California, Irvine
15:40	Tu4A-1: Advancing Performance in 3DHI D. Palmer, DARPA	Tu4B-1: Multi-functional Bandpass Filter with Co-designed Tunable Attenuator and Reflectionless Phase Shifter Functionalities	Tu4C-1: 3D Heterogeneous Integration (3DHI): Revolutionizing RF Systems T. Kazior, DARPA	Tu4D-1: From Waves to Insights: Al-Enhanced mmWave Systems A. Valdes-Garcia, <i>IBM</i>
15:50		Z. Zhang, Univ. College Cork; D. Psychogiou, Univ. College Cork		
16:0				
0	Tu4A-2: Image Dielectric Guides based Crossover for Millimeter-Wave Applications	Tu4B-2: Liquid Metal-Enabled Multi-Functional Passive Device YW. Wu, Univ. of Birmingham; L. Qian,	Liquid Metal-Enabled Tu4C-2: A <5dB NF, >17dBm OP1dB Tu4 nctional Passive Device F-Band GaN-on-SiC HEMT LNA with 16-1 . Univ. of Birmingham: L. Oian, Monolithic Substrate-Integrated with	
16:10 10	F. Faisal, INRS; M. Chaker, INRS; T. Djerafi, INRS	Univ. of Birmingham; Y. Wang, Univ. of Birmingham	F. Thome, Fraunhofer IAF; D. Schwantuschke, Fraunhofer IAF; P. Brückner, Fraunhofer IAF; X. Wang, Cornell Univ.; J.C.M. Hwang, Cornell Univ.; R. Quay, Fraunhofer IAF	X. Chen, Southeast Univ.; X. Niu, Purple Mountain Laboratories; X. Wang, H. Dua J. Feng, L. Lu, Southeast Univ.; L. He, Purple Mountain Laboratories; Q. Chen Southeast Univ.; D. Cheng, L. Luo, Purpl Mountain Laboratories; X. Wu, J. Si, Southeast Univ.; X. Ma, Télécom SudParis; X. Fan, L. Li, Southeast Univ.
20	Tu4A-3: A Novel Compact Uniplanar Isolation Circuit for Three-Port Baluns X. Que, SCUT; L. Jiang, SCUT; Y. Wang,	Tu4B-4: Monolithically Integrated Liquid Crystal Tunable Reflective Load for Millimeter-Wave Phase Shifter Applications	Tu4C-3: Advancements in 300mm GaN- on-Si Technology with Industry's First Circuit Demonstration of Monolithically Integrated GaN and Si Transistors	Tu4D-3: A 60-GHz Highly-Reused Join Radar-Communication Transceiver wi Reconfigurable Dual-Mode Gilbert Ce in 65-nm CMOS
16:30 1	SCUI	H. Kianmehr, Univ. of Waterloo; R.R. Mansour, Univ. of Waterloo	Q. Yu, Intel; A. Farid, Intel; I. Momson, Intel; J. Garrett, Intel; H. Vora, Intel; S. Bader, Intel; A. Zubair, Intel; P. Koirala, Intel; M. Beumer, Intel; A. Vyatskikh, Intel; P. Nordeen, Intel; T. Hoff, Intel; M. Radosavljevic, Intel; S. Rami, Intel; F. O'Mahony, Intel; H.W. Then, Intel	L. Lu, Southeast Univ.; X. Ma, Télécom SudParis; J. Feng, Southeast Univ.; L. H Purple Mountain Laboratories; X. Fan, Southeast Univ.; Q. Chen, Southeast Univ.; X. Chen, Southeast Univ.; Z. Liu, Purple Mountain Laboratories; J. Si, Southeast Univ.; X. Fan, Southeast Univ. L. Li, Southeast Univ.
2:40	Tu4A-4: A Compact 1.08–5.94GHz Balun With 1°/0.07dB Phase-/	Tu4B-5: Reconfigurable Quadrature Tu4C-4: Enabling Monolithic Couplers Integration of an Advanced 7-Layer		Tu4D-4: Fine Pitch D-Band Transmit Modules with Flip-Chip Aperture
	Amplitude-Imbalances Using Reverse Series Paths	C.F. Campbell, <i>Qorvo</i>	Silicon Back-End-Of-Line (BEOL) on 40nm GaN for Next Generation MMICs	Coupled Antennas A. Avling. Caltech: A. Haiimiri, Caltech
16:50 1	C. Wang, UESTC; X. Luo, UESTC		Jonathan Roderick, HRL Laboratories, LLC; Georges Siddiqi, HRL LLC; Dan Denninghoff, HRL LLC; Daniel Berkoh, HRL LLC; Joe Tai, HRL LLC; Sunil Rao, HRL LLC; Jonathan Lynch, HRL LLC; Clayton Tu, HRL LLC; Hasan Sharifi, HRL Laboratories, LLC; Daniel Kuzmenko, HRL LLC; Jana Georgieva, HRL LLC;	
7:00	Tu4A-5: Incorporating Resistive Foil RF Attenuators and Equalizers on and within PCBs from DC to 60GHz: Design, Analysis, and Experimental Validation		Warren McArthur, <i>TowerSemi</i> ; Seyed Mirshafieyan, <i>TowerSemi</i> ; David Howard, <i>TowerSemi</i>	Tu4D-5: A K/Ka-Band Satellite Termin Beamforming Front-End-Module Utilizing Dual-Band Self-Diplexing Antennas
	M. Grando, Invictus Animus Research and Design; R. Direen, Invictus Animus Research and Design; J. Richardson, Quantic X-Microwave; S. Martinez, Quantic X-Microwave; J. Andresakis, Quantic Ohmega Ticer, L. Wilhelm, Quantic Ohmega Ticer			J. Mayeda, Tokyo Tech; D. You, Tokyo Tech; X. Fu, Tokyo Tech; X. Wang, Tokyo Tech; H. Heridian, Tokyo Tech; M. Ide, Tokyo Tech; T. Tomura, Tokyo Tech; H. Sakai, Tokyo Tech; K. Kunihiro, Tokyo Tech; K. Okada, Tokyo Tech; A. Shirane, Tokyo Tech

RFIC TECHNICAL SESSIONS 15:40 - 17:00

WALTER E. WASHINGTON CONVENTION CENTER

146C	147AB	151AB	152AB	-
Tu4E: Advances in Low Noise Amplifiers	Tu4F: RFID-Based Technologies for Advanced Sensing Applications	RTu4B: mm-Wave and Beyond Radars and Imagers	RTu4C: Circuit Building Blocks in the 100–200GHz Frequency Range	
Chair: Jesse Moody, Sandia National Laboratories Co-Chair: Luciano Boglione, U.S. Naval Research Laboratory	Chair: Paolo Mezzanotte, Università di Perugia Co-Chair: Smail Tedjini, Université Grenoble Alpes	Chair: Raja Pullela, <i>MaxLinear</i> Co-Chair: Vito Giannini, <i>UHNDER</i>	Chair: Teerachot Siriburanon, University College Dublin Co-Chair: Rocco Tam, NXP Semiconduc- tors	
Tu4E-1: Radiometry and the Ever Shrinking Spectra and Ever Expanding Needs S. Misra, Jet Propulsion Lab	Tu4F-1: Hand Motion-modulated Chipless RFID for Gesture Recognition Ashkan Azarfar, Univ of Grenoble-Alpes France; Nicolas Barbot, Univ of Grenoble-Alpes France; Etienne Perret, Univ of Grenoble-Alpes France	RTu4B-1: A 90–98-GHz FMCW Radar Transceiver Supporting Broadband Modulation in 65nm CMOS S. Wang, Zhejiang Univ.; J. Chen, Zhejiang Univ.; J. Liu, Zhejiang Univ.; Q. Li, Zhejiang Univ.; Q. Yang, Zhejiang Univ.; X. Yu, Zhejiang Univ.; C. Song, Zhejiang Univ.; Q.J. Gu, Univ. of California, Davis; Z. Xu, Zhejiang Univ.	RTu4C-1: 110–170GHz 25% Duty-Cycle Gilbert-Cell Frequency Doubler with 6.5dBm Peak Output Power in BiCMOS 55nm Technology L. Piotto, Università di Pavia; G. De Filippi, Università di Pavia; A. Mazzanti, Università di Pavia	15:40 15:50
Tu4E-2: A Power-Efficient, F-Band, 6.5- dB NF, Staggered-Tuned, Inverter-Based CMOS LNA for 6G Receivers	Tu4F-2: Passive Coupled Microwave Resonators for VOC Monitoring Using Flexible PDMS Beam	RTu4B-2: A 200-GHz Modulable Transceiver With 35-dB TX ON/OFF Isolation and 16Gb/s Code Rate for MIMO Radar in 130nm SiGe Process	RTu4C-2: A Low Conversion Loss 120GHz Passive IQ Down-Conversion Subharmonic Mixer with Multiphase LO Distribution in 28nm CMOS	16:00
M. Oveisi, Univ. of California, Irvine; M. Oveisi, Univ. of California, Irvine; H. Wang, Univ. of California, Irvine; P. Heydari, Univ. of California, Irvine	M. Animzeel, Univ. of British Columbia; M. Arjmand, Univ. of British Columbia; M.H. Zarifi, Univ. of British Columbia	R. Zhou, Southeast Univ.; J. Chen, Southeast Univ.; S. Tang, Southeast Univ.; Z. Li, Southeast Univ.; D. Tang, Southeast Univ.; P. Zhou, Southeast Univ.; F. Xie, Southeast Univ.; Z. Chen, Southeast Univ.; W. Hong, Southeast Univ.	S. Koop-Brinkmann, V. Lasserre, Technische Univ. Braunschweig; M. Caruso, D. Dal Maistro, G. Volpato, Infineon Technologies; C. Ziegler, F. Stapelfeldt, V. Issakov, Technische Univ. Braunschweig	16:10
Tu4E-3: W-Band Low-Noise-Amplifier MMICs in InGaAs HEMT Technologies on Gallium-Arsenide and Silicon Substrates	Tu4F-3: Enhancing Battery-Free Sensor Nodes: Integrating Passive Beamforming with Frequency Division Duplexing	RTu4B-3: An On-Chip Antenna-Coupled Preamplified D-Band to J-Band Total Power Radiometer Chip in 130 nm SiGe BiCMOS Technology	RTu4C-3: A 200GHz Wideband and Compact Differential LNA Leveraging an Active Balun Input Stage in 16nm FinFET Technology	16:20
F. Heinz, <i>Fraunhofer IAF</i> ; A. Leuther, <i>Fraunhofer IAF</i> ; F. Thome, <i>Fraunhofer IAF</i>	Y. Qaragoez, KU Leuven; S. Pollin, KU Leuven; D. Schreurs, KU Leuven	J. Grzyb, Bergische Universität Wuppertal; M. Andree, Bergische Universität Wuppertal; H. Rücker, IHP; U. Pfeiffer, Bergische Universität Wuppertal	E. Chou, Univ. of California, Berkeley; N. Baniasadi, Univ. of California, Berkeley; A. Niknejad, Univ. of California, Berkeley	16:30
Tu4E-4: A Ku-Band +2 dBm IIP3 Transformer-Based LNA with Loop- Gain-Enhanced Capacitive Negative Feedback	Tu4F-4: Determining Media Absorption Loss using Embedded Harmonic Transponders	RTu4B-4: An E-Band FMCW Radar Receiver Achieving 38dB Cancellation for Arbitrary-Path Spillover Up to -10dBm and 5.7 dB NE in 65mm CMOS	RTu4C-4: A D-Band Bi-Directional Current-Reuse Common-Gate Amplifier in 45nm RFSOI	16:40
TS. Yang, National Taiwan Univ.; PY. Hsu, National Taiwan Univ.; LH. Lu, National Taiwan Univ.	Rye Fought, University of Vermont; Elsie Anthonio, University of Vermont; Tara Harte, University of Vermont; Pawan Bastola, University of Vermont; Ruth Petzoldt, University of Vermont; Harrison Jaffe, University of Vermont; Mandar Dewoolkar, University of Vermont; Jeff Frolik, University of Vermont	B. Chen, <i>HKUST(GZ)</i> ; Z. Zong, <i>HKUST(GZ)</i>	S.M.A. Uddin, Pennsylvania State Univ.; L. Zhong, Pennsylvania State Univ.; W. Lee, Pennsylvania State Univ.	16:50 1:
Tu4E-5: A 6.8–9.4GHz LNA Achieving 36.5dB Peak Gain, Consuming 4.28mW with an Adjustable Threshold Limiter for IR-UWB Applications	Tu4F-5: Comparative Study: Evaluating Chipless RFID Tag Authenticity with a Portable MIMO Reader-Based Approach			7:00
S. Lepkowski, Sandia National Labs; T. Forbes, Sandia National Labs; J. Moody, Sandia National Labs	S. Khan, Monash Univ.; L. Lasantha, Monash Univ.; N. Karmakar, Monash Univ.			

TUESDAY

Room 144AB

WIM/YP JOINT PANEL SESSION 15:45 - 16:30 Developing Your Personal Brand

Whether you recognize it or not, you have a personal brand. If you are wondering: How did that happen? Or, how can I influence how my brand is perceived in the industry? Then, this panel is for you!

PANELISTS:

Moderator: Judy Warner, The EEcosystem Podcast

Deborah Cooper, DC Associates, LLC

Aline Eid, University of Michigan

Tuesday, 18 June 2024

Laura Martin, Isola Group

THE SPY MUSEUM

THE SPY MUSEUM

THE SPY MUSEUM

WIM RECEPTION

19:30 - 21:30

Tuesday, 18 June 2024

After the panel, help continue the conversation and laughs at the annual WIM reception, which will be held at the International Spy Museum in Washington, DC on Tuesday evening. Be sure to stop by the WIM area to participate in a Women in Espionage scavenger hunt, meet our sponsors Microwaves & RF and Samtec, as well as network over cocktails and snacks.

HAM RADIO SOCIAL 2024

19:30 - 21:30

19:30 - 21:30

Tuesday, 18 June 2024

All radio amateurs and other interested IMS participants are cordially invited to the event.

YP RECEPTION

The reception is a place to celebrate the young professionals, the future of the microwave community, network and interact with like-minded people.

Tuesday, 18 June 2024

Sponsored By:

Microwaves&RF

THE SPY MUSEUM

MTT-S JOURNALS RECEPTION

19:30 – 21:30 Tuesday, 18 June 2024

The MTTS Publications committee has put together a unique and informative, Reviewers' Recruiting Reception, Publications Question and Answer Panel, and MTT Journals' Poster Session for you to attend! Come and meet our Editors-in-Chief while you sample a tasty and thirst quenching variety of hors d'oeuvres and libations.

WALTER E. WASHINGTON CONVENTION CENTER

INDUSTRY WORKSHOPS

08:00 - 15:10 Wednesday, 19 June 2024

SESSION CODE	TIME & LOCATION	TITLE AND ABSTRACT	SPEAKER/S, AFFILIATION
IWWE1	08:00 - 09:40 Room: 144C	Unlocking the Spectrum: Advancements in X-Band Radar, Electronic Defense, and Instrumenta- tion with Analog Devices' 20GSPS Apollo MxFE—Join us in this workshop as we delve deep into the unique capabilities of the 20GSPS Apollo MxFE designed to enable high performance applications in X-Band Radar, Electronic Defense, and Instrumentation. Learn how to leverage the on-chip hard- ened DSP feature set to add significant performance and lower power. We will move beyond theory and share real world performance data, link to specific applications, and demonstrate the tangible impact on your next generation design.	Robert Dandaraw, Judy Chui, Kate Berry, <i>Analog Devices Inc.</i>
IWWE2	10:10 - 11:50 Room: 144C	How to Carry Out the Full Spectrum of on Wafer Tests —This talk will provide practical guidance on how to best carry out full over temperature testing over multiple bands from 10 MHz all the way up to 1.1 THz using Wincal 5.0 software. We discuss benefits of a range of calibration techniques to optimise for test time and accuracy out and approaches to fully automate the data acquisition process. Recent techniques will be shown including Load pull to 170 GHz / 220 GHz and modulated testing with the Vector Component Analyser also to 170 GHz. Workshop examples using Python / Wincal 5.0 will be provided along with supporting videos.	Gavin Fisher, FormFactor, Inc.
IWWE3	13:30 - 15:10 Room: 144C	Over-the-air mmWave Phased Array Distortion Analysis and Linearization Testing — Phased array antenna modules (PAAM) need to operate at highest efficiency and still meet emissions and EVM requirements. A very high number of tests in power, frequency, waveform type, and modes are required. We will explain EVM impairments, techniques to diagnose root causes, and how to minimize the influence of test equipment. Then, review fundamentals of linearization, how to estimate if DPD is recommended, and present linearization results with gap analysis. The device under test will be a PAAM with at least 64 elements. Metrics include ACLR, EVM with and without demodulation, AMAM, AMPM, frequency response, and group delay.	Fabricio Dourado, Rohde & Schwarz GmbH & Co KG; Lei Xu, Fujikura Ltd.

BOOTH 2431, IMS EXHIBIT FLOOR

Build Your Own "Foxhole" Radio Receiver

09:30 – 17:00 | Wednesday, 19 June 2024

AND 09:30 - 15:00 | Thursday, 20 June 2024

PRESENTED BY: PROFESSOR DAVID S. RICKETTS, NORTH CAROLINA STATE UNIVERSITY

Ever wanted to build one of the early radios by hand?

Did you know you can do it without special parts, just a coil of wire, a pencil, a piece of metal and a paper towel tube? Join this hands-on experience where you will learn to build the ingenious radio receiver built by Lieutenant M. L. Rupert in the 1940s. The radio doesn't use a local oscillator so as to avoid being detected and was popular in areas (foxholes) where you didn't want to be detected. You will be able to build your own radio on site and take home or simply come by to learn how it operates and take a turn at tuning a radio with a pencil point – the parts are simple, but perhaps not the tuning! This hands-on experience is created by Prof. David S. Ricketts and is part of his work on disseminating wireless education in a more exciting way. See www.interactrf.org for educational materials on wireless systems and circuits.

David S. Ricketts received the PhD in Electrical Engineering from Harvard University. He is currently a Full Professor of Electrical and Computer Engineering at North Carolina State University.

His scientific research focuses on emerging microwave and analog circuits and systems from 1 MHz to 300 GHz. His work has appeared in *Nature* and in numerous IEEE conferences and journals. He is the author of the two books on jitter in high-speed electronics and electrical solutions. He is the recipient of the NSF CAREER Award, the DARPA Young Faculty Award and the George Tallman Ladd research award and is a Harvard Innovation Fellow. In addition as a teacher he is the recipient of the 2009 Wimmer Faculty Teaching Fellow at Carnegie Mellon University, 2013 Harvard University Bok Center Teaching Award and the 2021 William F. Lane Outstanding Teaching award at NCSU. Since 2015, Prof. Ricketts has taught experiential hand-on workshops on building a QAM Radio and a FMCW RADAR across the globe at all of the major microwave conferences.

				WALTER E. WASHING	TON CONVENTION CENTER
ENTREPRENEURSHI	P 101				
PANEL SESSION:		11:00 - 12:00	Wednesda	y, 19 June 2024	Room: 144AB
A Collaboration between Young Professionals (YP), Women in Microwaves (WIM) and the StartUp Program					
PANELISTS:					
Tristan El Bouyadi, Thintronics	Isar Mostafane	zhad, Nalu Scientific	Ken Va	nhille, Sandia National Labor	ratories (formerly with Nuvotronics)

FUTURE G SUMMIT

WALTER E. WASHINGTON CONVENTION CENTER | ROOM 207AB

08:00 - 17:00

Wednesday, 19 June 2024

Overview: The day-long Future G Summit will feature four sessions throughout the day, each focusing on a different theme: Spectrum Co-Existence and Sustainability, Non-Terrestrial Networks (NTNs), Metaverse Technologies, and 6G Technologies. Each of the themed sessions will feature speakers from industry describing some of the interdisciplinary concepts enabling these Future G systems. At the conclusion of each session, there will be an interactive panel comprising technical experts who will field questions from the audience and discuss some of the challenges for the realization of Future G networks. The Summit will conclude with inviting all of its attendees down to the IMS Exhibit Floor to take part in the Industry Hosted Reception.

SPEAKERS AND AGENDA:

SESSION 1: SPECTRUM CO-EXISTENCE AND SUSTAINABILITY					
	Spectrum Coexistence Activities for ITU's WRC Agenda for Future G	Veena Rawat, Senior Spectrum Advisor, GSMA			
08:00 - 09:45	Overcoming the 6G Spectrum Challenge	Edward Tiedemann , Qualcomm Fellow and SVP of Engineering, Qualcomm Technologies, Inc.			
	Unlocking 6G Through Innovations in Spectrum Sharing Technologies	Michael Miller, Director of Engineering, Virginia Tech-Applied Research Corporation/NextG Alliance			
	SESSION 2: NON-TE	RRESTRIAL NETWORKS			
	Ushering In the Next Era of Satcoms: Ubiquitous Connectivity with Metasurface Antenna Technology	Ryan Stevenson, Senior Vice President and Chief Scientist, Kymeta Corporation			
10:15 - 12:00	Introduction of NTT's Research and Development of Elemental Technologies for Non-Terrestrial Networks	Munehiro Matsui , Senior Research Engineer, NTT Access Network Service Systems Laboratories, NTT Corporation			
	Recent Advances in Standards Based Direct to Device Satellite Communications	Kamran Etemad, Senior Technology Advisor, Federal Communications Commission (FCC)			
	SESSION 3: META	VERSETECHNOLOGIES			
	Spectrum Considerations for AR/VR	Alan Norman, Public Policy Director, Meta Platforms			
13:00 - 14:45	Advances in Wi-Fi Technology and Spectrum Regulation Powering the Metaverse	Carlos Cordeiro , Intel Fellow & Wireless CTO, Client Computing Group, Intel Corporation			
	Networks for Metaverse	Tiberiu Grigoriu, Senior Director, Network Infrastructure Strategy and CTO, Nokia			
	SESSION 4: 6	GTECHNOLOGIES			
	6G Vision, Key Enablers and Timeline	Gary Xu, VP, Research, Samsung Research America			
15:15 - 17:00	Wireless Digital Twin – A New System Design Paradigm via 3D Electro-Magnetic Field Neural Reconstruction	Qi Qu , System Architect/Director, Research Meta Reality Lab Research			
	Goals and Technologies for 6G	Martin Weiss, Director of FutureG Applied Research, Office of the Under Secretary of Defense for Research and Engineering			

Society Sponsors:

WEDNESDAY

WALTER E. WASHINGTON CONVENTION CENTER

INTERSOCIETY PANEL SESSION

12:00 - 13:30 We

Wednesday, 19 June 2024

Room: 206

PL4: Climate Change – A Global Grand Challenge

ORGANIZERS:

Ke Wu, Polytechnique Montréal; Steven Reising, Colorado State University; J.-C. Chiao, Southern Methodist University

PANELISTS:

Jean-Pierre Raskin, Université catholique de Louvain, Belgium; Nils Weimann, University of Duisburg-Essen; Rabia Munsaf Khan, State University of New York; Suleka Chattopadhyay, IEEE Women in Engineering, Climate Change Committee; Peter Siegel, California Institute of Technology; David Kunkee, Aerospace Corporation; Al Gasiewski, University of Colorado **ABSTRACT:** This panel session offers a chance to engage conversation and exchange ideas about the significance and challenges in monitoring climate change and the potentials of utilizing microwave technologies for remote sensing in various applications.

elementsıx...

DE BEERS GROUP

Chemical vapour deposition (CVD) diamond for advanced GaN chips in communications and electronic warfare applications

Extreme thermal conductivity of up to >2200 W m⁻¹ K⁻¹ available

Meet with us at booth #1156

Element Six's Diafilm[™] Series

Contact us to find out more: T +1 408 986 2400 E ustechnologies@e6.com

IMS TECHNICAL SESSIONS 08:00 - 09:40 Wednesday, 19 June 2024

	146A	146B	146C	147AB
	We1C: High-Efficiency and High-Linearity Power Amplifiers for Communication and Satellite	We1D: Advances in High-Precision Radar Sensing Chair: Suresh Venkatesh, North Carolina	We1E: Novel Microwave Packaging Structures and Applications up to Sub-THz	We1F: Airborne and Space Systems Chair: Dennis Lewis, Boeing
	Systems Chair: Vittorio Camarchia, Politecnico di Torino Co-Chair: Varish Diddi. Oualcomm	State University Co-Chair: Nils Pohl, Ruhr-Universität Bochum	Chair: Kamal Samanta, AMWT Co-Chair: Nicholas Kolias, Raytheon	Co-Chair: Glenn Hopkins, <i>Georgia Tech</i>
00-00	We1C-1: GaAs & GaN MMIC Power Amplifier and Front-End Module Design for K-Ka Band	We1D-1: Considerations on Near-Field Correction: µm Accuracy with mmWave Radar	We1E-1: A Low Loss Die-Embedded Glass Substrate for 140GHz InP Power Amplifier Integration	We1F-1: Direct-Detect 250/310 GHz Pseudo-Correlation Radiometer and Double-Sideband 380 GHz Sounder for
	Commercial Communication Systems	L. Piotrowsky, Ruhr-Universität Bochum;	X. Jia, Georgia Tech; X. Li, Georgia Tech;	Ice Cloud Sensing
NQ-1N	M. Roberg, mmTron	N. Pohl, Ruhr-Universität Bochum	J.W. Kim, Georgia Tech; KS. Moon, Georgia Tech; M.J.W. Rodwell, Univ. of California, Santa Barbara; M. Swaminathan, Georgia Tech	A.A. Babenko, Jet Propulsion Lab; P. Kangaslahti, Jet Propulsion Lab; I. Ramos, Jet Propulsion Lab; M. Ogut, Jet Propulsion Lab; C.M. Cooke, Northroj Grumman; W. Deal, Northrop Grumman
08-30	We1C-2: High-gain and High-linearity MMIC GaN Doherty Power Amplifier with 3-GHz Bandwidth for Ka-band Satellite Communications	We1D-2: Micro Vibration Reconstruction Under In-Range Large-Scale Dynamic Clutters Using a Bi-Exponential Radar Signal Model	We1E-2: Integration Approach for Radar Transceiver MMICs with Integrated Antennas Enabling Adaptability to Customized Passive	We1F-2: A Hybrid CMOS-InP W-Band Imaging Radiometer with Compact MetaSurface Antenna for UAV-Based Wildfire Imaging
02-20	A. Piacibello, Politecnico di Torino; R. Quaglia, Cardiff University; R. Giofrè, Università di Roma "Tor Vergata"; R. Figueiredo, Universidade de Aveiro; P. Colantonio, Università di Roma "Tor Vergata"; N. Carvalho, Universidade de Aveiro; V. Valenta, European Space Aéency: V. Camarchia, Politecnico di Torino	X. Ma, SAMOVAR (UMR 5157); P. Wang, SAMOVAR (UMR 5157); J. Liu, Nanjing Forestry University; D. Zhang, SAMOVAR (UMR 5157)	Frontend Design D. Langer, Technische Universität Hamburg; N.C. Albrecht, Technische Universität Hamburg; F. Bartels, Technische Universität Hamburg; B. Tegowski, Technische Universität Hamburg; A. Koelpin, Technische Universität Hamburg	A. Tang, Jet Propulsion Lab; N. Chahat, Jet Propulsion Lab; G. Gupta, Jet Propulsion Lab
R-70	We1C-3: A High Efficiency and High Linearity GaAs HBT Doherty Power Amplifier for 5G NR 3.4V Application	We1D-3: Uncorrelated Phase Noise Cancellation in Intermediate Frequency with a Low-IF Dual-PLL Radar System	We1E-3: Flip Chip-Enhanced QFN Package Millimeter-Wave Slot Bowtie Antenna Performance Using Two Feeding Methodologies	We1F-3: UAV-Based Relays Using Activ Phased Arrays for Non-Line-of-Sight Millimeter-Wave Communications: Peol. Time Sield Testing
02-20	S. He, OnMicro; J. Liang, OnMicro; L. Xu, OnMicro; H. Meng, OnMicro; Y. Qian, OnMicro	M. Zhang, SUSTech; X. Wu, SUSTech; D. Pang, SUSTech; L. Qin, SUSTech; J. Li, SUSTech; Y. Cao, SUSTech; X. Jiang, Qualcomm; X. Liu, SUSTech	O.F. Medina, Univ. of Texas at Dallas; A.N. Jogalekar, Univ. of Texas at Dallas; K. Nambiar, Univ. of Texas at Dallas; D. Iyer, Amkor Technologies; A. Blanchard, Univ. of Texas at Dallas; H. Lu, Univ. of Texas at Dallas; R. Henderson, Univ. of Texas at Dallas	X. Zhang, Univ. of Waterloo; N. Esfarayer Univ. of Waterloo; A. Ben Ayed, Univ. of Waterloo; M.A. Chalaki, Univ. of Waterloo P. Namaki, Univ. of Waterloo; H. Jin, Univ of Waterloo; S. Boumaiza, Univ. of Waterloo
00-00	We1C-4: A Highly Linear and Efficient Differential Power Amplifier with 35-dBm Saturated Output Power, 65% Peak PAE hv Reducing Base Voltage	We1D-4: Improved Performance in PMCW Radar Systems Through Equalization Using Predistortion and Postprocessing	We1E-4: Embedded Printed Split Ring Resonators in Polymer Composites for Temperature Sensing	We1F-4: Prototype Design of Airborne Antenna System for HAPS Backhaul Networks Using 100GHz Band Frequency
2	Peaking in InGaP/GaAs HBT Process for Handset Applications	S. Peters, FAU Erlangen-Nürnberg;	M. Hayet-Otero, UPV/EHU; L. Bilbao-Alba, Tecnalia; O. Echeverria-	T. Nishibori, JAXA; N. Okada, JAXA;
0-10	S. Bae, Hanyang Univ.; J. Jeon, Gangneung-Wonju National University; S. Hwang, Hanyang Univ.; B. Yoon, Hanyang Univ.; J. Kim, Hanyang Univ.	S. Faghih-Naini, FAU Erlangen-Nürnberg; R. Weigel, FAU Erlangen-Nürnberg; T. Reissland, FAU Erlangen-Nürnberg	Altuna, Tec <i>nalia</i> ; I. Bustero-Martinez de Zuazo, <i>Tecnalia</i> ; J.M. Gonzalez, <i>UPV/EHU</i>	K. Kimura, JAXA; T. Sato, Waseda Univ.; K. Tamesue, Waseda Univ.; K. Jitsuno, Waseda Univ.; T. Sato, Waseda Univ.; T. Kawanishi, Waseda Univ.
8				
د. ۲	We1C-5: Integrated 5-W GaN Doherty Power Amplifier for 5G FR1 Bands with 19dB Gain Over a 41% Bandwidth	We1D-5: A Fully Integrated Radar-Based True-Speed-Over-Ground Sensor for Highly Dynamic Road Vehicles		
00-21	G. Bartolotti, <i>Politecnico di Torino;</i> A. Piacibello, <i>Politecnico di Torino;</i> V. Camarchia, <i>Politecnico di Torino</i>	N.C. Albrecht, Technische Universität Hamburg; D. Langer, Technische Universität Hamburg; A. Koelpin, Technische Universität Hamburg		

52

IMS TECHNICAL SESSIONS 08:00 - 09:40 Wednesday, 19 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

s & Applications

09:40

Microwave Field, Device & Circuit Techniques	Passive Components	Passive Components Active Components Systems & Applications E		Emerging Te	Emerging Technologie	
150AB	151AB	}		152AB		
We1G: Advanced Integrated Passive Development with GaN and CMOS Technology	We1H: mm-Wave Variable Gain Amplifiers and Phase Shifters		We11: Advances in Computational Techniques		utational	
Chair: Ki Shin, <i>Qorvo</i> Co-Chair: Pei-Ling Chi, <i>NYCU</i>	Chair: Damla Dimlioglu, C University Co-Chair: Mohammad Gh di, Kyocera	Cornell nadiri-Sadraba-	Chai Unive Co-C Unive	r: Zhizhang David Chen, <i>L</i> ersity :hair: Vladimir Okhmatov: ersity of Manitoba	Dalhousie Ski,	-
We1G-1: Advancements in Integrated Passive Circuits and Filters: A Decade of Technological Evolution	We1H-1: A 22-to-37.8 GHz Low-Gain- Phase-Error Variable-Gain Amplifier With Impedance-Compensation Technique in 65-nm CMOS Process			We1I-1: Parallel Fast Direct Error- Controlled Scattering Solutions via an H-Matrix-Accelerated Locally Corrected Nyström Method for the Combined Field		
A. Darwish, U.S. Army Research Laboratory	Y. Yu, UESTC; M. Geng, UESTC; S. Peng, UESTC; J. Li, UESTC; C. Zhao, UESTC; H. Liu, UESTC; Y. Wu, UESTC; K. Kang, UESTC		O. Babazadeh, Univ. of Manitoba; J. Hu, Univ. of Southern California; E. Sever, Aselsan; I. Jeffrey, Univ. of Manitoba; C. Sideris, Univ. of Southern California; V. Okhmatovski, Univ. of Manitoba)8:10
We1G-2: Record Fast Recovery Performance from Microwave High- Power Limiters with All-GaN SBD-MMIC Technology: 39ns@100W	We1H-2: Design of Ku-Band Bi- Directional Active Phase Shifter Enabling a Low RMS Error Utilizing Switch-Less Staggered Core with the Identical In-Out Matching U. Park, Seoul National Univ.; S. Hwangbo, Seoul National Univ.; J. Kim, Seoul National Univ.; T. Yoon, Seoul National Univ.; J. Oh, Seoul National Univ.		We1I-2: Coupled Electromagnetic- Thermal Analysis for Temperature- Dependent Materials with Physics- Informed Neural Networks			08:20
R. Zhao, CAS; X. Kang, CAS; Y. Zheng, CAS; H. Wu, CAS; Q. Li, CAS; Y. Huang, CAS; J. Gao, <i>East China Normal Univ.</i> ; K. Wei, CAS; X. Liu, CAS			We1I-3: Numerical Demonstration of THz Traveling Wave Amplifications in 2DElectron Gas (2DEG) under		03:30	
We1G-3: Broadband G-Band GaN Digital Step Attenuators	We1H-3: A 57-71-GHz Accurate dB- Linear Variable Gain Power Amplifier with Ultralow Gain Error Using Particle Swarm Optimization Algorithm X. Li, Southeast Univ.; D. Cheng, Purple Mountain Laboratories; X. Jiang, Southeast Univ.; D. Wang, Southeast Univ.; L. Li, Southeast Univ.		Scattering-Free and Low-Charge Density Regime S. Bhardwaj, University of Nebraska- Lincoln; M.F. Bin Hassan, University of Nebraska-Lincoln		08:40	
Fraunhofer IAF; D. Gebauer, Fraunhofer IAF; P. Brückner, Fraunhofer IAF; R. Quay, Fraunhofer IAF						08:50
We1G-4: A 0.013-mm ² 40–67-GHz Voltage-Controlled Distributed Attenuator with 1.9-dB Insertion Loss and Sub-6.1° Insertion Phase	We1H-4: A 29–48GHz Va Noise Amplifier Using Act 90-nm CMOS Process	riable Gain Low tive Load in	We1 the I Freq	I-4: A Novel Causal Meth DC and AC Solution Over uency Band	od to Blend the Entire	09:00
Imbalance X. Jiang, Southeast Univ.; Q. Chen, Southeast Univ.; Y. Liang, Southeast Univ.; L. Li, Southeast Univ.; X. You, Southeast Univ.	CH. Lai, National Iaiwan Univ, Y. Wang, National Taiwan Univ, YS. Ng, National Taiwan Univ; CC. Chiong, Academia Sinica; H. Wang, National Taiwan Univ.		r. Liu, Ansys; w. Hilel, Ansys; A. Xu, Ansys K. Zhu, Ansys; E. Bracken, Ansys		K. XU, ANSYS; ys	09:10
We1G-5: An Ultra-Compact Wideband Tunable Autotransformer-Based Electrical-Balanced Duplexer with 46-700Hz 30dB Isolation Randwidtb			We1 Lagu Netv	I-5: Order Reduction Usi Ierre-FDTD with Embeddo vork	ng ed Neural	09:20
Yanir Schwartz, Technion - Israel Institute of Technology; Emanuel Cohen, Technion - Israel Institute of Technology			Y. Wa Tech M. S	ang, Georgia Tech; Y. Guo, ; R. Kumar, Pennsylvania waminathan, Georgia Tec	Georgia State Univ.; h	09:30

IMS TECHNICAL SESSIONS

10:10 - 11:50 Wednesday, 19 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components Active Components** Focus & Special Sessions 145AB 146A 146B 146C We2B: In Celebration: Special We2D: Advances in Multichannel We2E: Additive Manufacturing We2C: Novel Techniques for Power Session for Dr. Kawthar A. Zaki and Amplifiers and Distributed Radar Systems **Technologies and Applications** Dr. Ali E. Atia Chair: Wing Shing Chan, CityU Chair: Christian Waldschmidt, Chair: Dominique Baillargeat, Universität Ulm Chair: Mohamed Fahmi, Defence Université de Limoges Co-Chair: Anna Piacibello, Politecnico di Research and Development Canada Co-Chair: Walter Wall, HRL Laboratories Co-Chair: Debabani Choudhury, Intel Torino Co-Chair: Aly Fathy, Univ. of Tennessee 10:10 We2C-1: A GaN-Based MMIC Doherty We2D-1: A 140GHz FMCW Ultra We2E-1: Beyond Planar: An Additively We2B-1: Dual Mode Canonical Wideband High Dynamic Range RADAR **Power Amplifier With Class F Peaking** Manufactured, Origami-Inspired Waveguide Filters, A Look Back Branch Utilizing 8×8 Phased Arrays Shape-Changing, and RFIC-Based R. Snyder, RS Microwave **Phased Array for Near-Limitless** F. Manni, Università di Roma "Tor A. Ahmed, Univ. of California, San Diego; **Radiation Pattern Reconfigurability in** Vergata"; R. Giofrè, Università di Roma 10:20 L. Li, Univ. of California, San Diego; 5G/mmWave Applications M. Jung, Univ. of California, San Diego; "Tor Vergata"; V. Camarchia, Politecnico H. Al Jamal, Georgia Tech; C. Hu, Georgia di Torino; A. Piacibello, Politecnico di G.M. Rebeiz, Univ. of California, San Torino; F. Giannini, Università di Roma Diego Tech; N. Wille, Georgia Tech; K. Zeng, "Tor Vergata"; P. Colantonio, Università di George Mason Univ.; M.M. Tentzeris, Roma "Tor Vergata" Georgia Tech 10:30 We2B-2: Modelling of Dielectric We2C-2: Compact Dual-Core Drive We2D-2: All-Digital Carrier Frequency We2E-2: Additively Manufactured Al₂O₃ resonators and their Use in Microwave Stage using Three-winding Transformer Synchronization for Distributed Radar W-Band RFID Tag Based on a Reflective for CMOS Broadband Power Amplifier **1D Photonic Crystal** Filters Sensor Networks R. Mansour, Univ. of Waterloo J.-H. Kim, Chungnam National University; R.H. Kenney, Univ. of Oklahoma; J. Sánchez-Pastor, Technische Univ. Darmstadt; K.-D. Jenkel, Universität J.-T. Son, Chungnam National University; J.W. McDaniel, Univ. of Oklahoma 10:40 J.-H. Song, Chungnam National Duisburg-Essen; M. Späth, Technische University; J.-E. Lee, Chungnam National University; M.-S. Baek, Chungnam National University; J.-T. Lim, Chungnam Univ. Darmstadt; M. Sakaki, Universität Duisburg-Essen; R. Jakoby, Technische Univ. Darmstadt; N. Benson, Universität National University; H.-W. Choi, Samsung; Duisburg-Essen; A. Jiménez-Sáez, S.-M. Moon, ETRI; D. Chang, ETRI; Technische Univ. Darmstadt C.-Y. Kim, Chungnam National University 10:50 We2B-3: Pioneering Satellite We2C-3: A 1.2 to 5.7GHz Multi-Mode We2D-3: Fully Wireless Coherent We2E-3: Electro-Thermal Modeling of **Technologies and Microwave Filters Distributed Phased Array System for Dual-Input Power Amplifier Using a AM-SLM Based Cavity Resonators** Novel Sigmoid-Function-Based Power **Networked Radar Applications** A. Zaghloul, U.S. ARMY Research Office Q.M. Khan, Chalmers Univ. of Solitter J. Merlo, Michigan State Univ.; S. Wagner, Technology; D. Kuylenstierna, Chalmers Univ. of Technology T. Torii. Mitsubishi Electric: A. Yamashita. Lawrence Livermore National Lab: J. 11:00 Mitsubishi Electric; Y. Komatsuzaki, Lancaster, Lawrence Livermore National Mitsubishi Electric; S. Shinjo, Mitsubishi Lab; J. Nanzer, Michigan State Univ. Flectric We2C-4: High-Power BAW-Based FDD We2D-4: Specularity Resistant We2B-4: The Filters that Fly We2E-4: 3D Screen Printing: Efficient Front-End using Indirect-Duplexing Millimeter-Wave Imaging with Additive Manufacturing of Groove Gap H. Yao, AST SpaceMobile Load Modulated Balanced Amplifier for **Distributed Repeater Apertures** Wave Guide Filters in D-band Massive MIMO Array T. Nusrat, Univ. of South Florida: K. Reuter, Fraunhofer IFAM; P. Boe, CAU; Y. Cao, Qorvo; S.P. Gowri, Univ. of Central D. Miek, CAU; M. Höft, CAU; T. Studnitzky, S. Vakalis, Univ. of South Florida 11:20Florida; N.B. Vangipurapu, Univ. of Fraunhofer IFAM; C. Zhong, Fraunhofer Central Florida; K. Chen, Univ. of Central IFAM; T. Weissgärber, Fraunhofer IFAM; I.O. Leon, European Space Agency Florida We2B-5: Mode Matching Technique and We2E-5: Additive Manufacturing of its Applications a Copper Elliptical Corrugated Horn J. Ruiz-Cruz, Universidad Politécnica de Antenna in the Sub-Terahertz Regime Madrid K. Braasch, CAU; A. Teplyuk, CAU; D. Miek, CAU; J. Scheibler, Fraunhofer 1:40 IFAM; T. Weißgärber, Fraunhofer IFAM; C. Zhong, Fraunhofer IFAM; M. Höft, CAU 1:5

We2B-6: Modelling and Design of Ridge Waveguide Components

M. Fahmi, DRDC

IMS TECHNICAL S	ESSIONS 10:1	10 - 1	1:50 Wednesda	ay, 19 June 2	WALTER E. 2024 CONVENTI	WASHINGTON ON CENTER	
Microwave Field, Device & Circuit Techniques	Passive Components Active Co	omponents	Systems & Applications	Emerging Techno	logies & Applications	Focus & Special Sess	ions
147AB We2F: Mixed-Signal Circuits and Systems for Space and	150AB We2G: Emerging Design Methodologies for Next-Gen	eration	151AB We2H: Power Amplifie	r Perfor-	15 We21: Design and of Novel Microwa	2AB d Characterization	
Communication Applications Chair: Hermann Boss, <i>Rohde & Schwarz</i> Co-Chair: Christian Carlowitz, <i>FAU</i> Erlangen-Nürnberg, Germany	Low-Loss Couplers Enabling Integrated Chipsets Chair: Abhishek Sahu, Qorvo Co-Chair: James Hwang, Cornell University	Highly	Chair: José Carlos Pedro, L Aveiro Co-Chair: Paul J. Draxler, M Technologies	Iniversidade de AaXentric	Structures Chair: Costas D. Sa Toronto Co-Chair: Werner Th	rris, University of niel, ANSYS	
Ne2F-1: Recent Advances in Signal Processing Technologies or Wireless and Optical Communications	We2G-1: The Role of Al in Device Modeling and Characterization F. Kharabi, <i>Qorv</i> o	, "	We2H-1: Unlocking the No Generation of Cellular Connectivity: Advances in and Transmitter Architect	RF PA ures	We2I-1: Electronic Asymmetry for Tuna Phase Shift in CRLF	Control of Structural ble Nonreciprocal I Transmission Lines	10.10
′K. Chen, <i>Coherent</i>			R. Ma, pSemi		T. Ueda, Kyoto Instit	ute of Technology	TD.70
Ne2F-2: A 10-Bit DAC 3GS/s nterpolating DDFS for Distortion-	We2G-2: A Low-Loss Millimeter- Fully-Differential Coupler Using Packo as SISL Dictory	•wave Dual	We2H-2: A Baseband Imp Cancellation Technique fo	edance r Wideband	We2I-2: A 3D-Print Free-Form Metasur	ed Millimeter-Wave face Based on	10:30
And the first state of the second state of the	F. Zhang, Tianjin Univ.; Y. Wang, Tia Univ.; K. Ma, Tianjin Univ.	anjin	I. van den Heuvel, Cardiff U S. Cripps, Cardiff University Cardiff University; P. Tasker University; M. Omisakin-Ec Compound Semiconductor Catapult; E. Azad, Compou Semiconductor Application	niversity; /; R. Quaglia, , Cardiff wards, / Applications nd ns Catapult	Y. Huang, UMass Lo Lowell; H. Zhao, UM UMass Lowell; B. Zh H. Zhang, UMass Lo	well; H. Tang, UMass ass Lowell; Y. Dong, eng, UMass Lowell; well	1 U. 4U
Ve2F-3: S-Band Phase-Locked oop Frequency Synthesizer for atellite Communication and Space	We2G-3: A Low-Loss 3-dB Coupl Metal-Integrated Suspended Lin J. Ye. Tianiin Univ.: Y. Wang, Tianiir	ler Using 1e n Univ.:	We2H-3: A Robust Search Optimal Driving Signals fo High Power Amplifiers	Algorithm of r Dual-Input	We21-3: A Modified Determine Surface Measured Roughne	Gradient Model to Impedance from ess Profiles with	10.JU
. Xia, SCUT; Y. Wang, SCUT	K. Ma, Tianjin Univ.		F.M. Barradas, Universidade de Aveiro; L.C. Nunes, Universidade de Aveiro; J.C. Pedro, Universidade de Aveiro; C. Erdmann, AMD		F. Sepaintner, Techn Deggendorf, A. Schu J. Jakob, Technische Deggendorf, F. Roel W. Bogner, Technisc Deggendorf, S. Zorm	ri Emphasis iische Hochschule an, Rohde & Schwarz; Hochschule n, Rohde & Schwarz; he Hochschule , Rohde & Schwarz	TT'NN
Ve2F-4: Microwave Frequency Comb Senerator for Radio Astronomy Applications	We2G-4: Transformer-Based Multisection Quadrature Couple 1.5 Octave Bandwidth Using Gal Record Leterated Deceive Decive	er with As-	We2H-4: A Tri-Branch Ana Pre-Distortion Linearizer 1 Compensation of Gain Inf	log or the lection in	We2I-4: Plasma Ba and Adaptive High- Protector	sed Absorptive Power Waveguide	11.10
Λ. Toennies, Jet Propulsion Lab; R. Wang, Jet Propulsion Lab; W. Diener, et Propulsion Lab; A. Matsko, Jet ropulsion Lab	Technology ZT. Zhao, <i>Taipei Tech</i> ; HS. Yang <i>Tech</i>	, Taipei	A. Pitt, Univ. of Bristol; M.A of Bristol; T. Cappello, Univ	. Beach, Univ. of Bristol	K.K. V., Univ. of Tolea Univ. of Toledo; A. S Toledo	do; Md.T. Ahmed, emnani, <i>Univ. of</i>	07.TT
e2F-5: Update Time of a Closed- oop Digital Pre-Distortion on an RF	We2G-5: On-Chip Hybrid Couple Enabling Highly Integrated MMI(ers C	We2H-5: A Method for De Linear, Efficient 2-Stage G	signing a SaN PA for	We2I-5: Electroma Characterization of Wave Dielectric Fib High-Temperatures Environment Comm Sensing	gnetic Stability Millimeter- ers at Extremely : Enabling Harsh nunication and	11:30
ystem-on-Chip for Reconfigurable ansmitters Raimondo, Univ. of Bristol; J. Ma, niv. of Bristol; M.A. Beach, Univ. of ristol; T. Cappello, Univ. of Bristol	Components at Millimeter and Submillimeter Wave Frequencies Caitlyn Cooke, Northrop Grumma Maxwell Duffy, Northrop Grumma Mason Fordham. Northrop Grumma	s in Corp.; in Corp.; man	M. Olavsbråten, <i>NTNU</i> ; A.I. Hagen, <i>NTNU</i>		A. Sharma, Stevens Technology; Y.R. Kin Technology	Institute of n, Stevens Institute of	11.4U
	Corp.; Michael Eller, Northrop Gru Corp.; Alfonso Escorcia, Northrop Grumman Corp.; William Deal, No	umman) prthrop			We2I-6: Twisting Ef Millimeter-Wave Pla	fects on X-Shaped astic Waveguides	
	Grumman Corp.				S. Lagoug, IMS (UM IMS (UMR 5218); É 5218)	к 5218); А. Ghiotto, . Kerhervé, IMS (UMR	NC:TT

		13.30 - 13.10	weullesuay, 19 Julie 2024		
owave	e Field, Device & Circuit Techniques Passive	Components Active Components Syste	ems & Applications Emerging Technologies & Ap	pplications Focus & Special Sessions	
	145AB	146A	146B	147AB	
	We3B: In Memoriam: Special Session Honoring John Bandler	We3C: Load Modulated GaN Power Amplifier Design Techniques	We3D: Radar-Based Structures for Advanced Sensing Applications	We3F: Emerging Planar Filter Architectures and Design Meth	
	Chair: Jose Ernesto Rayas Sanchez, ITESO	Chair: Yulong Zhao, S <i>kyworks</i> Co-Chair: Chenyu Liang, <i>Qorvo</i>	Chair: Changzhan Gu, S <i>JTU</i> Co-Chair: Kazuya Yamamoto, <i>Mitsubishi</i> Electric	Chair: Xun Luo, UESTC Co-Chair: Li Yang, Universidad de Al	
13	We3B-1: Remembering John W. Bandler - A Maverick for All Seasons				
30	W. J.R. Hoefer, Univ. of Victoria	We3C-1: Stability Analysis Methods for Microwave Power Amplifiers: A Modern Perspective	We3D-1: Radar Based Heart Rate Sensing on the Smart Glasses I.W. Huang, <i>Facebook</i> ; P. Rajbhandary,	We3F-1: Balanced Flat-Group-Dela Low-Pass Filter with Differential-Me Input-Quasi-Reflectionless Behavio Digital-Communication Systems	
	We3B-2: Working With The Bandler	T.A. Winslow, Macom	Facebook; S. Shiu, Facebook; J. Ho, Facebook; J. Zhu, Facebook; B. Wilson,	Z. Luo, Sun Yat-sen Univ.; L. Yang,	
40	J. Rautio, Sonnet Software		Facebook; G. Ye, Facebook	Universidad de Alcalá; T. Su, Sun Yat-s Univ.; R. Gómez-García, Universidad c Alcalá	
13	We3B-3: John Bandler's Contributions to Sensitivity Analysis: A Cornerstone of Design and Imaging Methodologies				
50	N. Nikolova, <i>McMaster Univ.</i>	We3C-2: Design and Characterization of an MMIC Current Mode Outphasing Power Amplifier	We3D-2: A Cost-Effective Single- Channel Displacement Measurement Technique Without Down-Conversion Using Low-IF Donnler Radar	We3F-2: RF Balanced-to-Single-En Out-of-Phase/3-dB Filtering Power Divider With Differential-Mode Inpu Ouasi-Reflectionless Behavior	
14	We3B-4: Cognition-driven Design for Microwave CAD	A. Bogusz, Cardiff University; W. Li, UPC; J. Lees, Cardiff University; R. Quaglia, Cardiff University; G. Montoro, UPC;	Zhiwei Zhang, Shanghai Jiao Tong Univ.;	XB. Zhao, Xidian Univ.; F. Wei, Xidiar Univ.; L. Yang, Universidad de Alcalá; Gómez García, Universidad de Alcalá	
00	Q. Zhang, Carleton Univ.	P.L. Gilabert, UPC; S. Cripps, Cardiff University	Jiayu Zhang, Shanghai Jiao Tong Univ.; Changzhan Gu, Shanghai Jiao Tong Univ.;		
14	We3B-5: Advanced Design of Microwave Devices for Space Applications - A Tribute to Prof. John Bandler				
6	M. Yu, SUSTech	We3C-3: Decade-Bandwidth RF-Input Pseudo-Doberty Load Modulated	We3D-3: Measurement of the Radial and Angular Velocity of Tagged Objects	We3F-3: FDTD Modeling of Time- Modulated Resonators-Based Ban	
	We3B-6: On the Advanced Use of Space Mapping Techniques with Passive Microwave Components for Space Applications	Balanced Amplifier using Signal- Flow-Based Phase Alignment Design	Using Interferometric Harmonic Micro- Doppler Radar	Filters Using Modified Telegrapher Equations	
14:20	(in grateful memory of Prof. Bandler) V. Boria-Esbert, <i>Univ. Politècnica de</i>	P. Gong, Univ. of Central Florida; J. Guo, Univ. of Central Florida; N.B. Vangipurapu, Univ. of Central Florida;	C. Hilton, Michigan State Univ.; J.A. Nanzer, Michigan State Univ.	A. Kumar, Iyndall National Institute Z. Zhang, Tyndall National Institute D. Sarkar, Indian Institute of Scien S. Nikolaou, Fradoriak University	
	We3B-7: Neural Space Mapping as a	K. Chen, Univ. of Central Florida		S. Nikolaou, Frederick University; P. Vryonides, Frederick University; D. Psychogiou, Tyndall National Insti	
14	Microwave Modeling and Design				
3	J. Rayas-Sánchez, ITESO	We3C-4: Mode Extension of Load- Modulated Balanced Amplifier with Enhanced Efficiency	We3D-4: Accurate Representation of the Rolling Motion for the Self-Rolled-Up Inductor with Radar Interferometry	We3F-4: Compact, Multilayer 5G Fi Based on Extracted-Pole Shielded Lumped Resonators	
14	We3B-8: Space Mapping - A Gateway to Explainable Al	J. Xie, CUHK; KK.M. Cheng, CUHK; P. Yu, CUHK; X. Fang, SUSTech	Keke Zheng, Shanghai Jiao Tong Univ.; Yue Wu, Fudan Univ.; Wei Xu, Shanghai Jiao Tong Univ.: Changthan Gu, Shanghai	Y. Zheng, UESTC; Y. Dong, UESTC	
40	Q. Cheng, SUSTech (14:40 - 14:50		Jiao Tong Univ.; Junfa Mao, Shanghai Jiao Tong Univ.		
14:	We2B-5: Mode Matching Technique and its Applications				
50	J. Ruiz-Cruz, Universidad Politécnica de Madrid	We3C-5: A 3.2–4.2GHz Wideband 47dBm GaN HEMT Sequential-LMBA with Harmonic Tuned Using CRLH	We3D-5: Interferometric Approaches for Accurate Location and Displacement Measurement Using Passive Frequency-	We3F-5: Design of Multifunctional Bandpass Filter With Tunable Attenuation and Reflectionless	
15	We2B-6: Modelling and Design of Ridge Waveguide Components	Transmission Line Stub H. Asami, Sumitomo Electric Industries;	Doubling Reflectennas	Behavior A. Nadeem, Frederick University;	
00	M. Fahmi, DRDC	I. Sumiyoshi, Sumitomo Electric Industries; H. Yamamoto, Sumitomo Electric Industries; T. Maehata, Sumitomo	University of Vermont; T.M. Weller, Oregon State Univ.	S. NIKOlaou, Frederick University; D. Psychogiou, Tyndall National Insti P. Vryonides, Frederick University	

56

IMS TECHNICAL SESSIONS 13:30 - 15:10

5:10 Wednesday, 19 June 2024

WALTER E. WASHINGTON Convention Center

Applications

Focus & Special Sessions

Microwave Field, Device & Circuit Techniques	Passive Components	Active Componen	ts Systems & Applications	Emerging Technologies
150AB	151AB	}	152AB	
We3G: Integrated Passives for Innovative Front-Ends	We3H: Digital Lineariz Techniques for Wireles	ation ss Transmit-	We31: Modeling Techniqu Advanced Applications	es for
Chair: Anthony Ghiotto, <i>Université de Bordeaux</i> Co-Chair: Jason Soric, <i>Raytheon</i>	ter Applications Chair: Anding Zhu, Univers Dublin Co-Chair: Pere L. Gilabert Politècnica de Catalunya	sity College , Universitat	Chair: Da Huang, MathWorks Co-Chair: David R. Jackson, U Houston	niversity of
We3G-1: A Novel RF Hilbert Transformer Single Sideband Mixer	We3H-1: Role of Al/ML ir Linearization for Next G W	PA Vireless	We3I-1: Spectrum of Insights Advanced Engineering Simula	with
H. Yan, FAMU-FSU; H. Zhang, FAMU-FSU; P. Liu, FAMU-FSU; S. Zolfaghary Pour, FAMU-FSU; J. Casamayor, FAMU-FSU; M. Plaisir, FAMU-FSU; B. Arigong, FAMU-FSU	K. Chuang, Analog Devices	5	L. Williams, Ansys	13:40
We3G-2: A Wideband 4-Port Gyrator- Based Circulator in 0.15µm GaN MMIC A. Dascurcu, <i>Columbia Univ.</i> ; N. Jahan,	We3H-2: Adaptive Kernel Sharing for Digital Predis RF Power Amplifiers With	Function tortion of Dynamic	We31-2: Analytic Differential Operator Solution of a Dielec Under Radial Dipole Illuminat	Admittance tric Sphere tion
Columbia Univ.; H. Krishnaswamy, Columbia Univ.	Resource Block Allocation H. Yin, Univ. College Dublin; A. Zhu, Univ. College Dublin		M. Huynen, <i>IDLab</i> ; D. De Zutte D. Vande Ginste, <i>IDLab</i> ; V. Okh <i>Univ. of Manitoba</i>	r, IDLab; Imatovski,
We3G-3: Dual-Channel Half-Mode Substrate-Integrated Waveguide Link Utilizing Mode Division Multiplexing	We3H-3: A Low-Complexi Coefficient Update Meth Transmission Configurati	ty DPD od for Varying ons	We31-3: A Rigorous 3D Near t Transformation When Only an Magnetic Field is Available	o Far Field Electric or
M. Elsawaf, Univ. of Southern California; C. Sideris, Univ. of Southern California	T. Zhong, UESTC; J. Peng, U UESTC; Y. Bian, UESTC; X. Y Y. Tang, UESTC; B. Pang, U	JESTC; S. He, Wang, UESTC; ESTC	J.M. Tamayo, Ansys; A. Mathis, W. Thiel, Ansys	Ansys; 14:20
We3G-4: A Novel Microwave Modulator Based on Complex Impedance Loads A. Venere, <i>CNEA</i> ; R. López La Valle, <i>UNLP</i> ; M. Hutada, <i>UNLP</i> .	We3H-4: Behavioral Mod Millimeter Wave GaN Pow for 6G Integrated Sensing Communications Applica	eling of rer Amplifiers g and tion	We31-4: Integrated Distribute Equivalent Circuit Model of P Connector with AIC and Base Loading Resonances for Fast	14:30 Cle 5.0 board SI
	Y. Yu, Southeast Univ.; L. Yu, Southeast Univ.; P. Chen, Southeast Univ.; C. Yu, Southeast Univ.		Y. He, University of Illinois Urba Champaign; K. Song, Universit Urbana-Champaign; M. Feng, of Illinois Urbana-Champaign	ana- y of Illinois University
We3G-5: A 94-GHz Absorptive SP4T Switch with Pad Parasitic Cancellation YC. Tseng, <i>NYCU</i> ; CN. Kuo, <i>NYCU</i>	We3H-5: On the Paramet Identification of Cascade Models for Wideband Dig Predistortion Linearizatio	er d Behavioral ital	We3I-5: Optically-Transparen FSS for Outdoor-to-Indoor Transmission Improvement Fe Electromagnetic-Thermal Co-	t tAnalysis
	R. Criado, UPC; W. Li, UPC Analog Devices; G. Montoi K. Chuang, Analog Devices UPC	; W. Thompson, ro, <i>UPC</i> ; s; P.L. Gilabert,	Y. Youn, POSTECH; C. Lee, POS D. Kim, POSTECH; D. An, POST A.A. Omar, KFUPM; W. Hong, P	TECH; ECH; OSTECH
				15:10

				WALTER	E. WASHINGTON CONVENTION CENTER
MICF	ROAPPS	09:45 - 18:00	Wednesday, 1	9 June 2024	MicroApps Theater: Booth 2159
SESSION					
CODE	TIME	TITLE	SPEAKER/S, AFFILIATIONS		
WEMA2	09:45 - 10:00	Enabling Electromagnetic Simulations with Encrypted Components			Gary Lytle, Cadence
WEMA3	10:00 - 10:15	Ultra-Fast Electromagnetic Simulation Large-Scale Axisymmetric Reflector A	on Tool for Coaxial C Antennas	onnectors and	Marzena Olszewska-Placha, <i>QWED Sp. z o.o.</i>
WEMA4	10:15 - 10:30	Utilizing Real World Signal in Simulat	tion		Michael Thompson, Tawna Wilsey, Cadence Design Systems
WEMA5	10:30 - 10:45	COTS, Low-Cost Space Qualified Mic	rowave Components	;	Joseph Buonaiuto, Narda Miteq
WEMA6	10:45 - 11:00	Active Emissivity Correction In Millim Sensors	ieter-Wave Radiome	tric Temperature	Andrew Laundrie, Eravant
WEMA7	11:00 - 11:15	Understanding the Benefits of Low D Materials	k Thermoset High Fr	equency Circuit	John Coonrod, Rogers Corporation
WEMA8	11:15 - 11:30	A 4-Channel Transmit/Receive, 0.1-1 sor System on Module	L8GHz 3UVPX Tuner-	Digitizer+Proces-	Mike Jones, Analog Devices, Inc.
WEMA9	11:30 - 11:45	Discrete RF Sampling Transceiver Su Defense	pport Wide Bandwid	th for Space and	Russell Hoppenstein, Texas Instruments
WEMA10	11:45 - 12:00	Expanding Horizons: USRP Radios wi	th MATLAB		Robin Getz, <i>MathWorks;</i> Neel Pandeya, <i>Ettus</i> Research
WEMA11	12:00 - 12:15	War Driving with MATLAB and USRP F Location	Radios: Data Captur	e sync'ed with GPS	Robin Getz, MathWorks
WEMA12	12:15 - 12:30	PAPR as a Fast and Cost-Effective Inc	licator of EVM Degra	adation	Bob Buxton, Boonton
WEMA13	12:30 - 12:45	6G FR3 Signal Chain for Wireless Tes	t Systems		Mark D'Amato, Analog Devices
WEMA14	12:45 - 13:00	Characterization of Solid and Liquid Materials for 5G/6G Applications in 1-130 GHz Range			Marzena Olszewska-Placha, QWED Sp. z o.o.
WEMA15	13:00 - 13:15	Noise Cancellation by Vector Averagin for Analysis of WLAN or 5G Signals	ng of the IQ Data of I	Repetitive Signals	Florian Ramian, Wolfgang Wendler, Rohde & Schwarz
WEMA16	13:15 - 13:30	Open-Source 5G FR2 Test Network (I	FR2 OAI)		Ethan Lin, TMYTEK
WEMA17	13:30 - 14:30	StartUp Program: SBIR/STTR Panel Moderator: Quenton Bonds, NASA Panelists: Ben Schrag, National Scien	Session ce Foundation; Dave	McCarthy, Departme	nt of Energy; Mohamed Mounir Abdin, NASA
WEMA18	14:30 - 14:45	AI Classification of Waveform Types: Signals	Differentiating 5G N	R and RADAR	Robin Getz, MathWorks
WEMA19	14:45 - 15:00	AI-Based Digital Predistortion in MAT	FLAB		Mike McLernon, MathWorks
WEMA20	15:00 - 15:15	External Optimization and AI/ML Trai ADS	ining of a 3GHz Filte	r Using Python in	Daren McClearnon, Jason Boh, Matt Ozalas, Keysight Technologies
WEMA21	15:15 - 15:30	200W Ka-Band High Power Amplifier Power Combiner with 30W GaN-Base	Technology Realized d Chips	d by an 8-Way	Hiroshi Hosaka, Nisshinbo Micro Devices Inc.
WEMA22	15:30 - 15:45	mmWave CMOS Power Amplifier Desi piler and PrimeSim	gn and Simulation v	vith Custom Com-	Jian Yang, Synopsys
WEMA23	15:45 - 16:00	RAPID-VT Vector Signal Transceiver E tion of Different Power Amplifier Arch	extension Enabling Enabling Enabling Enabling Enablished Enablishe	asy Characteriza- alistic Conditions	Sajjad Ahmed, Focus Microwaves; Marc Vanden Bossche, NI
WEMA24	16:00 - 16:15	Wideband Modulated PA Validation in	n the THz Range		Markus Lörner, Rohde & Schwarz
WEMA25	16:15 - 16:30	Advancements in Linear and Non-Linear Bidirectional Impedance and Stability Analysis			Bryce Hotalen, Cadence Design Systems
WEMA26	16:30 - 16:45	Advances In Thermal Analysis and Ov Advanced Microwave Devices and Fro	er-The-Air Electroma ont-End-Modules	agnetic Analysis of	Dustin Kendig, <i>Microsanj LLC</i> ; Sidina Wane, eV Technologies
WEMA27	16:45 - 17:00	High-Performance RF AFE with integr	rated DPD/CFR		Serkan Tokgoz, Kang Hsia, Texas Instruments
WEMA28	17:00 - 18:00	The Next Top Startup Competition: Pa	aving Paths to Finan	cial Success	

Sponsored By:

ROHDE&SCHWARZ

Wednesday, STARTUP PANEL SESSION: **SBIR/STTR** 13:30 - 14:30 19 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

MicroApps Theater Booth 2159

Learn about the SBIR/STTR programs from several agencies. During the Q&A session, you will have the opportunity to ask the hard questions.

MODERATOR:

PANELISTS:

Quenton Bonds, NASA

Ben Schrag, National Science Foundation

Dave MCcarthy, Department of Energy

WALTER E. WASHINGTON CONVENTION CENTER

Mohamed Mounir Abdin, NASA

Reception to follow in the StartUp Networking Lounge

17:00 - 18:00 Wednesday, 19 June 2024

MicroApps Theater, Booth 2159

The Next Top Startup Competition: Paving Paths to Financial Success

A perennial highlight of IMS, the Top Start-Up Competition in 2024 offers an exhilarating opportunity for prominent entrepreneurs to pitch their ventures to seasoned judges and an audience deeply entrenched in the RF/microwave technology ecosystem and new venture creation. Leveraging their wealth of experience, the judges will provide valuable insights, enabling participants to spotlight their products and ideas before the diverse audience at the IMS Exhibit Floor. Here, their pitches undergo rigorous evaluation, and outstanding contributions are duly recognized with well deserved prizes. Winners will be announced at the IMS Closing Session on Thursday, 20 June 2024 at 15:30 in the Ballroom of the Walter E. Washington Convention Center.

IMS EARLY CAREER PAPER COMPETITION

Now in it's second year, this competition is open to authors from industry, government agencies, and post-doctoral candidates, with less than 10 years of professional experience, and who are not full-time students or faculty members.

THIS YEAR'S IMS EARLY CAREER PAPER COMPETITION FINALISTS:

IF1-39 A Low-Loss DC-to-300 GHz InP-Si Interconnection Based on Wafer Level **Packaging Using Chip-First-Facedown Process** Yusuke Araki, NTT

Tu1B-3 3-D Centrally-Loaded FSS Leveraging Conductive and Dielectric Multimaterial Additive Manufacturing for Broadband Performance Xiaojing Lv, UTS

Tu4B-2 Liquid Metal-Enabled Multi-Functional Passive Device Yi-Wen Wu, University of Birmingham

Tu2E-3 Ultrabroadband Indoor Optical Wireless Networks A. Nirmalathas, University of Melbourne

We1F-1 Direct-Detect 250-310 GHz Pseudo-Correlation Radiometer and Double-Sideband 380 GHz Sounder for Ice Cloud Sensing Akim A. Babenko, Jet Propulsion Laboratory

We1G-3 Broadband G-Band GaN Digital Step Attenuators Philipp Neininger, Fraunhofer IAF

We3C-5 A 3.2-4.2GHz Wideband 47dBm GaN HEMT Sequential-LMBA with Harmonic Tuned Using CRLH Transmission Line Stub Hirotaka Asami, Sumitomo Electric Industries

15:10 - 17:00

Chair: Matthew Morgan, NRAO

IF1-1: 57-GHz Low-Power Subharmonic Parametric Downconverter Exploiting Capacitance Nonlinearity in SiGe BiCMOS

P. Palacios, RWTH Aachen Univ.; M. Saeed, InCirT; R. Negra, RWTH Aachen Univ.

IF1-10: A 0.9 to 4.0GHz High Efficiency Reactively-Matched GaN Power Amplifier MMIC

J. Kamioka, Mitsubishi Electric; H. Sato, Mitsubishi Electric; S. Miwa, Mitsubishi Electric; Y. Kamo, Mitsubishi Electric; S. Shinjo, Mitsubishi Electric

IF1-12: Rigorous Approach to the Coupling Matrix Synthesis Problem Based on Geometric Interpretation

S. Lee, Korea Univ.; J. Lee, Korea Univ.; J. Lee, Korea Univ.

IF1-13: A Novel Wideband Power Amplifier Enhanced Through Controlled Prescribed Transmission Zeros by Coupling Block

S. López de Pablo, UAB; J. Verdú, UAB; P. de Paco, UAB

IF1-14: A Low-Complexity Harmonic Technique for RF Power Amplifiers

Xinyu Wang, Univ. of Electronic Science and Technology of China; Jun Peng, Univ. of Electronic Science and Technology of China; Songbai He, Univ. of Electronic Science and Technology of China; Bo Pang, Univ. of Electronic Science and Technology of China; Tianyang Zhong, Univ. of Electronic Science and Technology of China; Yijie Tang, Univ. of Electronic Science and Technology of China; Haiqian Tang, Univ. of Electronic Science and Technology of China

IF1-15: Machine-Learning Assisted Digital Predistortion Using Feedback via Dual-Polarized Antenna Arrays

Yuuichi Aoki, Samsung Electronics Co., Ltd.; Yonghoon Kim, Samsung Electronics, Co., Ltd.; Heedo Kang, Samsung Electronics Co., Ltd.; Wonki Kim, Samsung Electronics Co., Ltd.; Kihong Min, Samsung Electronics Co., Ltd.; Sung-Gi Yang, Samsung Electronics Co., Ltd.;

IF1-16: A Fully Additively Manufactured Reconfigurable Millimeter-Wave Bandpass Filter Based on VO2 Dielectric Layer

H. Tang, UMass Lowell; P. Liu, FAMU-FSU; S. Li, Yunnan Precious Metal Laboratory; B. Zheng, UMass Lowell; H. Zhao, UMass Lowell; Y. Dong, UMass Lowell; Y. Huang, UMass Lowell; J. Li, Argonne National Lab; B. Arigong, FAMU-FSU; H. Zhang, UMass Lowell

IF1-17: Measurement of Multiband Complex Permittivity by Perturbation Insertion Method

Q. Shi, SCUT; Q.-X. Chu, SCUT; F.-C. Chen, SCUT

IF1-18: Enhanced In-Band Self-Interference Suppression by Combining Bandpass Filter-Based RF Cancellers and Dual-Polarized Antennas

Kevin Martin, Univ. College Cork; Dimitra Psychogiou, Univ. College Cork

IF1-19: A Millimeter-Wave "Quasi-Reflectionless" Filter Prototype Implemented with Micromachined Silicon

N.D. Sauber, Univ. of Virginia; M.F. Bauwens, Dominon Microprobes; M.E. Cyberey, Univ. of Virginia; A.W. Lichtenberger, Univ. of Virginia; N.S. Barker, Univ. of Virginia; R.M. Weikle II, Univ. of Virginia

IF1-2: An X-Band Phase Noise Canceling Feedforward Amplifier in InP 250nm HBT Process

P. Shirmohammadi, *Univ. of Virginia*; S. Hanifi, *Univ. of Virginia*; S.M. Bowers, *Univ. of Virginia*

IF1-20: A Quantum Model for a Graphene Josephson Junction Parametric Amplifier for Quantum-Noise-Limited Microwave Amplification

Y. Yuan, Technische Univ. München; Ö.E. Asirim, Technische Univ. München; M. Haider, Technische Univ. München; C. Jirauschek, Technische Univ. München

IF1-21: A Millimeter-Wave Low-Loss On-Chip Filter Design Using a Wideband Synthesis Method in 90-nm SiGe BiCMOS Process

X. Huang, Princeton Univ.; Z. Liu, Princeton Univ.; E.A. Karahan, Princeton Univ.; K. Sengupta, Princeton Univ.

IF1-22: Design and Analysis of SPDT Switch and Array Antenna for 28GHz 5G New Radio

C.-T. Huang, National Chi Nan Univ.; Y.-S. Lin, National Chi Nan Univ.; C.-Y. Huang, National Chi Nan Univ.; K.-S. Lan, National Chi Nan Univ.

IF1-23: Wi-Fi SIMO Radar for Deep Learning-Based Sign Language Recognition

Y.-C. Lai, National Sun Yat-sen Univ.; P.-Y. Huang, National Sun Yat-sen Univ.; T.-S. Horng, National Sun Yat-sen Univ.

IF1-24: Compact, Low Loss 4-Bit Ku-Band Hybrid Passive Phase Shifter Realized in 0.13-µm SiGe HBT BiCMOS for LEO SATCOM

S. Kim, Hanyang Univ.; K.W. Choi, Ajou Univ.; B. Yoon, Hanyang Univ.; J. Kim, Hanyang Univ.; I. Ju, Ajou Univ.

IF1-25: Topology Optimization of Microwave Filters Based on Direct Computation of Poles and Zeros

M. Oldoni, Politecnico di Milano; Y.E. Elhouchy, Politecnico di Milano; G. Macchiarella, Politecnico di Milano; G.G. Gentili, Politecnico di Milano

IF1-26: A Monolithic X-Band 32dBm GaAs HBT Power Amplifier with Efficient Operation Over a Wide Range of Power Supply Voltages

P. Asbeck, Univ. of California, San Diego; S. Alluri, Univ. of California, San Diego; J.-H. Li, WIN Semiconductors; J.-T. Chung, WIN Semiconductors

IF1-27: A Ku-Band Internally Matched 50W GaN HEMT Power Amplifier Using Advanced Cu-Mo-Cu Heat Sink

Y. Park, *KETI*; J.Y. Jeong, *RFMTL*; W. Kang, *RFMTL*; M. Park, *KETI*; D. Kim, *KETI*

IF1-28: 938Gb/s, 145-GHz-Bandwidth Wireless Transmission Over the Air Using Combined Electronic and Photonic-Assisted Signal Generation

Z. Zhou, Univ. College London; A. Kassem, Univ. College London; J. Seddon, Univ. College London; E. Sillekens, Univ. College London; I. Darwazeh, Univ. College London; P. Bayvel, Univ. College London; Z. Liu, Univ. College London

IF1-29: Recursive Neural Network with Phase-Normalization for Modeling and Linearization of RF Power Amplifiers

A. Fischer-Bühner, *Nokia Bell Labs*; L. Anttila, *Tampere Univ*.; M.D. Gomony, *Nokia Bell Labs*; M. Valkama, *Tampere Univ*.

IF1-3: A D-Band Traveling-Wave Amplifier by Embedding GaN HEMTs as Current Probes in a SiC SIW

L. Li, Cornell Univ.; T. Li, Cornell Univ.; P. Fay, Univ. of Notre Dame; J.C.M. Hwang, Cornell Univ.

IF1-30: Improve RF Dual Probe Calibration Accuracy with Peer-Terminated Standards

H.C. Fu, *MPI*; K. Jung, *MPI*

IF1-31: Various RF Substrate Solutions for 22nm FD-SOI Technology Targeting Cryogenic Applications

M. Vanbrabant, UCLouvain; M. Rack, UCLouvain; D. Lederer, UCLouvain; V. Kilchytska, UCLouvain; J.-P. Raskin, UCLouvain

IF1-32: Innovative Development Approach for a High-Power 8-Way Coaxial Radial Combiner

M.M.M. Ali, Scientific Microwave; S.M. Sifat, Scientific Microwave; M. Elsaadany, Concordia Univ.; S.I. Shams, Concordia Univ.; K. Wu, Polytechnique Montréal

IF1-33: Additively Manufactured High-Power Light Weight Millimeter-Wave Band Pass Filter Optimized with AI Tuning Algorithm for 5G Space Applications

L Salman, Ansys; D. Liu, SynMatrix Technologies; S. Acharya, Ansys; L. Vancleef, 3D Systems; K. Huybrechts, 3D Systems; G. Saad, Scientific Microwave; M.M.M. Ali, Scientific Microwave

IF1-34: A ROM-Less DDS with High-Speed Selectors for Reduction in DAC Settling Time Requirements

H. Shibue, *Ritsumeikan Univ.*; H. Nosaka, *Ritsumeikan Univ.*

IF1-35: Wearable Human Body Communication Channel Measurements in the Body Resonance Regime

S. Sarkar, *Purdue Univ.*; Q. Huang, *Purdue Univ.*; M. Nath, *Purdue Univ.*; S. Sen, *Purdue Univ.*

IF1-36: 6.5GHz Longitudinal Leaky SAW Filter Using LiNb03-on-SiC Structure for Wi-Fi 7

M. Sun, USTC; S. Zhang, CAS; P. Zheng, CAS; X. Fang, CAS; X. Ou, CAS

IF1-37: System and Characterization Method for Controlled Microwave Heating in Medical Applications

S. Pawar, Pennsylvania State Univ.; B. Westhafer, Pennsylvania State Univ.; A. Attaluri, Pennsylvania State Univ.; M.-R. Tofighi, Pennsylvania State Univ.

IF1-38: A 256–287 GHz Full 360° Hybrid-type Phase Shifter with Active SPDT Switches

Eunjung Kim, Korea Univ.; Sanggeun Jeon, Korea Univ.

IF1-39: A Low-Loss DC-to-300 GHz InP/Si Interconnection Based on Wafer Level Packaging Using Chip-First/Facedown Process

Y. Araki, *NTT*; Y. Shiratori, *NTT*; H. Hamada, *NTT*; M. Muto, *NTT*; I. Abdo, *NTT*; T. Jyo, *NTT*; F. Nakajima, *NTT*

IF1-4: Scalable GaN-Based 64-Element Circularly-Polarized Transceiver with 65-dBm Saturated EIRP for Millimeter-Wave CubeSat Applications

Y.-F. Tsao, NYCU; A. Desai, NYCU; H.-T. Hsu, NYCU

IF1-40: Noise-Adaptive Auto-Encoder for Modulation Recognition of RF Signal

J. Woo, Georgia Tech; K. Jung, Georgia Tech; S. Mukhopadhyay, Georgia Tech

IF1-41: Reconstruction of Arbitrarily Shaped Sources with Electromagnetic Time-Reversal and Kurtosis

J. Li, Fuzhou Univ.; Z.D. Chen, Fuzhou Univ.; X. Feng, Dalhousie University; J. Cai, Fuzhou Univ.; Z. Xu, Fuzhou Univ.

IF1-42: 28GHz GaAs pHEMT High-Efficiency Power Amplifier Using Multi-Section Transmission-Line Power Combining/ Matching Technique

Y-S. Lai, National Taiwan Univ.; Z.-H. Fu, National Taiwan Univ.; J.-W. Ye, National Taiwan Univ.; C.-S. Wu, Yuan Ze Univ.; K.-Y. Lin, National Taiwan Univ.

IF1-43: A 5.6dB Noise-Figure X-Band to W-Band CMOS Frequency-Extender Receiver Frontend

T. Elazar, Tel-Aviv Univ.; E. Socher, Tel-Aviv Univ.

IF1-5: Experimental Study on Transition Loss of On-Chip SIW Interconnects and Transmission Lines Using Two De-Embedding Reference Planes in 200GHz Band Frequency

S.K. Thapa, Kyushu Univ.; R.K. Pokharel, Kyushu Univ.; A. Barakat, Kyushu Univ.; S. Amakawa, Hiroshima Univ.; N.H. Mubarak, NICT; S. Hara, NICT; I. Watanabe, NICT; A. Kasamatsu, NICT

IF1-6: A 5.2-GHz Area-Efficient RF Front-End with 2.79× PAE Enhancement at 7.7-dB Power Back-Off

T.-S. Yang, National Taiwan Univ.; W.-W. Wang, National Taiwan Univ.; P.-Y. Hsu, National Taiwan Univ.; L.-H. Lu, National Taiwan Univ.

IF1-7: Consistent Q(v)-I(v) AIGaN/GaN HEMT Nonlinear Equivalent-Circuit Modeling

J.C. Pedro, *Universidade de Aveiro*; L.C. Nunes, *Universidade de Aveiro*

IF1-8: Practical Considerations for RF Measurements of Cryogenic CMOS Circuits for Quantum Computing

D. Frolov, IBM; S. Chakraborty, IBM; D. Underwood, IBM; J. Glick, IBM; J. Timmerwilke, IBM; R. Robertazzi, IBM; K. Inoue, IBM; M. Yeck, IBM; P. Rosno, IBM; B. Snell, IBM; D. Moertl, IBM; S. Lekuch, IBM; C. DeSantis, IBM; K. Tien, IBM; J.-O. Plouchart, IBM; D. Frank, IBM; D. Wisnieff, IBM; J. Bulzacchelli, IBM; C. Baks, IBM; D. Friedman, IBM; B. Gaucher, IBM

IF1-9: Rapid Calibration of Variable Gain Phase Shifters: A Novel Characterization Approach with Sparse Measurements

Y. Chen, Univ. of Waterloo; S. Boumaiza, Univ. of Waterloo

Be a Part of the MHz To THz Community

Why Join MTT-S?

- Grow your professional network and collaborate with 12,000+ members
- Broaden your exposure with 200 chapters around the world
- Enhance your knowledge and skills by participating at 40+ conferences
- Access and contribute to MTT-S's 12 publications including the award winning *Microwave Magazine*
- Launch your digital profile on IEEE and gain access to more than 5 million documents in IEEE Xplore

www.mtt.org/join-mtt-s

Join Today!

ADVANCED PRACTICE AND INDUSTRY PAPER COMPETITIONS

The Advanced Practice Paper Competition (APPC) recognizes outstanding technical contributions that apply to practical applications. All finalist papers are on advanced practices and describe an innovative RF/microwave design, integration technique, process enhancement, and/or combination thereof that results in significant improvements in performance and/or in time to production for RF/microwave components, subsystems, or systems.

The Industry Paper Competition (IPC) recognizes outstanding technical contributions from industry sources. All finalist papers are from the RF/microwave industry and describe innovation of a product or system application that potentially has the highest impact on an RF/microwave product and/or system which will significantly benefit the microwave community and society at large.

ADVANCED PRACTICE PAPER FINALISTS:

IF1-21 A Millimeter-Wave Low-Loss On-Chip Filter Design Using a Wideband Synthesis Method in 90-nm SiGe BiCMOS Process

X. Huang, Z. Liu, E.A. Karahan, K. Sengupta, Princeton Univ.

IF1-5 Experimental Study on Transition Loss of On-Chip SIW Interconnects and Transmission Lines Using Two De-Embedding Reference Planes in 200GHz Band Frequency

S.K. Thapa, R.K. Pokharel, A. Barakat, *Kyushu Univ.*; S. Amakawa, *Hiroshima Univ.*; M.H. Mubarak, S. Hara, I. Watanabe, A. Kasamatsu, *NICT*

IF1-8 Practical Considerations for RF Measurements of Cryogenic CMOS Circuits for Quantum Computing

D. Frolov, S. Chakraborty, D. Underwood, J. Glick, J. Timmerwilke, R. Robertazzi, K. Inoue, M. Yeck, P. Rosno, B. Snell, D. Moertl, S. Lekuch, C. DeSantis, K. Tien, J.-O. Plouchart, D. Frank, D. Wisnieff, J. Bulzacchelli, C. Baks, D. Friedman, B. Gaucher, *IBM*

Th1B-4 Automated mmWave Power Amplifier Design Flow and a 28-GHz Design Example in 45-nm CMOS SOI

Yaolong Hu, Xiaohan Zhang, Qiang Zhou, Rice Univ.; Fan Cai, Cindy Cui, Keysight Technologies; Taiyun Chi, Rice Univ.

Th1B-5 Analysis and Modeling of Super-Regenerative Oscillators with FMCW Signals S. Sancho, M. Ponton, A. Suarez, *Universidad de Cantabria*

Th2C-2 Low-Noise Power-Amplifier MMICs for the WR4.3 and WR3.4 Bands in a 35-nm Gate-Length InGaAs mHEMT Technology

F. Thome, A. Leuther, Fraunhofer IAF

Th2G-5 Millimeter-wave Device Characterization Under Wideband Modulated Signals using Vector Network Analyzer Frequency Extenders A. Ben Aved, P. Mitran, S. Boumaiza, Univ. of Waterloo

Tu2A-5 A 28GHz Band Highly Efficient GaAs Rectenna MMIC with EM Coupling Structure for an External Highly Efficient Wire Antenna

N. Sakai, Y. Tondokoro, A. Kobayashi, K. Noguchi, M. Tsuru, K. Itoh, *Kanazawa* Institute of Technology

Tu2B-1 Direct-Coupled TE-TM Dual-Mode Waveguide Cavities

C. Tomassoni, Università di Perugia; S. Bastioli, R. Snyder, RS Microwave; V. de la Rubia, Universidad Politécnica de Madrid

Tu2E-3 Ultrabroadband Indoor Optical Wireless Networks

A. Nirmalathas, T. Song, *Univ. of Melbourne*; S. Edirisinghe, *Jayawardenapura University*; J. Li, *Shandong Normal University*; C. Ranaweera, *Deakin University*; K. Wang, *Shandong Normal University*; C. Lim, *Univ. of Melbourne*

Tu3C-1 An Energy Efficient 56-Gb/s D-band Point-to-point Link based on CMOS TX and RX Modules and Transmitarray Beamformers

J.L. Gonzalez-Jimenez, A. Siligaris, *CEA-LETI*; A. Hamani, *Univ. Grenoble Alpes*; F. Foglia Manzillo, P. Courouve, N. Cassiau, C. Dehos, A. Clemente, *CEA-LETI*

Tu3D-4 Broadband Low-Noise Ka-Band Front-End MMIC in a 0.15-µm GaN-on-SiC HEMT Technology

F. Thome, P. Neininger, S. Krause, P. Brückner, R. Quay, *Fraunhofer IAF* We1D-1 Considerations on Near-Field Correction: µm Accuracy with mmWave

Radar L. Piotrowsky, N. Pohl, *Ruhr-Universität Bochum*

We2C-4 High-Power BAW-Based FDD Front-End using Indirect-Duplexing Load Modulated Balanced Amplifier for Massive MIMO Array

Y. Cao, Qorvo; S.P. Gowri, N.B. Vangipurapu, K. Chen, Univ. of Central Florida We2H-5 A Method for Designing a Linear, Efficient 2-Stage GaN PA for Supply

We2H-5 A method for Designing a Linear, Efficient 2-Stage Gan PA for Supply Modulation

M. Olavsbråten, A.I. Hagen, NTNU

We2I-5 Electromagnetic Stability Characterization of Millimeter-Wave Dielectric Fibers at Extremely High-Temperatures: Enabling Harsh Environment Communication and Sensing

A. Sharma, Y.R. Kim, Stevens Institute of Technology

INDUSTRY PAPER FINALISTS:

IF1-10 A 0.9 to 4.0GHz High Efficiency Reactively-Matched GaN Power Amplifier MMIC

J. Kamioka, H. Sato, S. Miwa, Y. Kamo, S. Shinjo, Mitsubishi Electric

IF1-15 Machine-Learning Assisted Digital Predistortion Using Feedback via Dual-Polarized Antenna Arrays

Yuuichi Aoki, Yonghoon Kim, Heedo Kang, Wonki Kim, Kihong Min, Sung-Gi Yang, Samsung Electronics Co., Ltd.

IF1-32 Innovative Development Approach for a High-Power 8-Way Coaxial Radial Combiner

M.M.M. Ali, S.M. Sifat, Scientific Microwave; M. Elsaadany, S.I. Shams, Concordia Univ.; K. Wu, Polytechnique Montréal

Th1E-2 A Novel Q-Choked Resonator for Microwave Material Measurements Alleviating Sample Thickness Limitations of Existing Techniques M. Celuch, M. Olszewska-Placha, L. Nowicki, W. Gwarek, *QWED*

Th2C-1 220-GHz High-Efficiency Power Amplifiers in 250-nm and 130-nm InP HBT Technologies Having 14.4–25.0% PAE and 40–60mW Pout

Z. Griffith, M. Urteaga, P. Rowell, Teledyne Scientific & Imaging

Th2G-4 Measurement of Residual Phase Noise of Amplifiers at 80GHz Using Interferometric Measurement Technique W. Wendler, A. Roth, *Rohde & Schwarz*

W. Wendler, A. Roth, Ronde & Schwarz

Tu1E-1 Silicon Photonic Integrated Circuit Beamformer for RF Photonic Applications

T. Creazzo, C. Stine, C. Creavin, C. Harrity, K. Shreve, F. Wang, P. Yao,

J. Murakowski, Phase Sensitive Innovations; G. Schneider, S. Shi, Univ. of Delaware;

C. Schuetz, Phase Sensitive Innovations; D.W. Prather, Univ. of Delaware

Tu1F-2 An All-Digital Synthesizer Enabled by a Convolutional Neural Network C.M. Thomas, *Boeing*; M. Abderezai, *HRL Laboratories*; L. Dong, V. Leung, *Baylor Univ.*

Tu3C-6 Sub-THz Photoconductive Evanescent-Mode Waveguide SPST Switch T. Jones, D. Peroulis, *Purdue Univ.*

Tu4B-5 Reconfigurable Quadrature Couplers

C.F. Campbell, Qorvo

Tu4C-3 Advancements in 300mm GaN-on-Si Technology with Industry's First Circuit Demonstration of Monolithically Integrated GaN and Si Transistors Q. Yu, A. Farid, I. Momson, J. Garrett, H. Vora, S. Bader, A. Zubair, P. Koirala, M. Beumer, A. Vyatskikh, P. Nordeen, T. Hoff, M. Radosavljevic, S. Rami, F. O'Mahony, H.W. Then, *Intel*

We1I-4 A Novel Causal Method to Blend the DC and AC Solution Over the Entire Frequency Band

P. Liu, W. Thiel, X. Xu, K. Zhu, E. Bracken, Ansys

We2G-5 On-Chip Hybrid Couplers Enabling Highly Integrated MMIC Components at Millimeter and Submillimeter Wave Frequencies

Caitlyn Cooke, Maxwell Duffy, Mason Fordham, Michael Eller, Alfonso Escorcia, William Deal, Northrop Grumman Corp.

We are delighted to introduce the 2024 recipients of MTT-S Society Awards. Congratulations to all the awardees for being recognized for their outstanding contributions to the field of microwave theory and technology, significant achievements in their career, or distinguished services to the society. The MTT-S Awards Banquet program includes dinner, entertainment, and technical and service awards presented by the MTT-S Awards Committee.

MTT-S AWARDS	2024 AWARD RECIPIENTS AND DESCRIPTIONS
Microwave Career Award	Les Besser —For a Career of Leadership, Meritorious Achievement, Creativity and Outstanding Contributions in the Field of Microwave Theory and Technology
Microwave Pioneer Award	Marian Pospieszalski —For the development of an excellent noise model for the design of low noise FET microwave circuits especially at low temperatures which is successfully in use since more than 30 years.
Microwave Application Award	Lei Zhu—For the development of multiple-mode resonators and their application in wide-band filters, matching circuits and antennas.
Distinguished Service Award	Victor Fouad Hanna–In Recognition of a Distinguished Record of Service to the MTT Society and the Microwave Profession over a Sustained Period of Time
Distinguished Educator Award	Jenshan Lin—For Outstanding Achievements as an Educator, Mentor, and Role Model for Microwave Engineers and Engineering Students
N. Walter Cox Award	Vijay Nair-For Exemplary Service to the Society in a Spirit of Selfless Dedication and Cooperation
N. Walter Cox Award	Ali Darwish—For Exemplary Service to the Society in a Spirit of Selfless Dedication and Cooperation
IEEE MTT-S Outstanding Young Engineer Award	Markus Gardill—For Outstanding Early Career achievements as an ambassador of microwave systems and applications.
IEEE MTT-S Outstanding Young Engineer Award	Chung-Tse Michael Wu —For Outstanding Early Career achievements in Microwave Metamaterials-Based Antennas, Circuits, and Radar Sensing Systems.
IEEE MTT-S Outstanding Young Engineer Award	Steven Callender —For Outstanding Early Career achievements in mmWave and subTHz SoC development in deeply-scaled CMOS technology.
IEEE MTT-S Outstanding Young Engineer Award	Kaushik Dasgupta —For Outstanding Early Career Achievements in Reconfigurable RF and mmWave CMOS ICs and Power Amplifiers.
Microwave Prize	João L. Gomes, Luís C. Nunes, Filipe M. Barradas, José C. Pedro, Adam Cooman, Aryan E. F. de Jong, Rob M. Heeres, – "The Impact of Long-Term Memory Effects on the Linearizability of GaN HEMT-Based Power Amplifiers, in IEEE Transactions on Microwave Theory and Techniques," vol. 70, no. 2, pp. 1377-1390, Feb. 2022
IEEE Microwave Magazine Best Paper Award	Roberto Quaglia, Jingzhou Pang, Steve C. Cripps, Anding Zhu, —"Load-Modulated Balanced Amplifier: From First Invention to Recent Development," IEEE Microwave Magazine vol. 23, no. 12, pp. 60-70, Dec. 2022
IEEE Microwave and Wireless Components Letters Tatsuo Itoh Prize	Mohamed Hussein Eissa, Gunter Fischer, Thomas Mausolf, Holger Ruecker, Andrea Malignaggi, Gerhard Kahmen,—"220-320-GHz J-Band 4-Way Power Amplifier in Advanced 130-nm BiCMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 32, no. 11, Nov. 2022
IEEE Transactions on Terahertz Science & Technology Best paper Award	Y. Koyama, Y. Kitazawa, K. Yukimasa, T. Uchida, T. Yoshioka, K. Fujimoto, T. Sato, J. Iba, K. Sakurai, T. Ichikawa,—"A High-Power Terahertz Source Over 10 mW at 0.45 THz Using an Active Antenna Array With Integrated Patch Antennas and Resonant-Tunneling Diodes", IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 5, Sep. 2022
IEEE Journal of Microwaves Best Paper Award	Tobias Chaloun, Luigi Boccia, Emilio Arnieri, Michael Fischer, Vaclav Valenta, Nelson Fonseca, Chritiastian Waldschmidt —"Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives," IEEE Journal of Microwaves, vol. 2, no. 4, pp. 545-581, Oct. 2022

IMS TECHNICAL SESSIONS

08:00 - 09:40 Thursday, 20 June 2024

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components Active Components** Focus & Special Sessions 145AB 146A 146B 146C Th1B: Advances in CAD Th1D: Low-Noise Cryogenic Th1E: Material Sensing at Th1C: Advanced mm-Wave Power **Techniques for RF and Microwave** Amplifiers for Ka- to E-Band Integrated Circuits for Quantum **Microwave and mm-Wave Circuits and Systems** Computing **Frequencies** Applications Chair: José E. Rayas-Sánchez, ITESO Chair: Kavita Goverdhanam, US Army Chair: Zoya Popović, University of Chair: Michael Roberg, mmTron CCD-C5ISR Center Colorado Boulder Co-Chair: Marco Pirola, Politecnico di Co-Chair: Munkyo Seo, Sungkyunkwan Co-Chair: Sorin P. Voinigescu, University Co-Chair: Pawel Kopyt, Warsaw Torino University of Toronto University of Technology 08:00 Th1D-1: A Gm-Boosting Inductorless Th1B-1: A Novel Transfer Learning Th1C-1: A 52-to-86GHz V-/E-band GaN Th1E-1: Accurate Materials' **Distributed combined Power Amplifier** Noise-Canceling Low Noise Amplifier in **Approach for Efficient RF Device Testing as an Enabler for Microwave and Millimeter-Wave Behavior Model Parameter Extraction** with Output Power Beyond 1W and 40-nm CMOS for Quantum Applications 34GHz Bandwidth Industries R. Wang, HangZhou DianZi University; M.K. Chaubey, National Tsing Hua Univ.; J. Su, HangZhou DianZi University; Bharath kumar Cimbili. Ericsson: M. Celuch. OWED Y. Liu, National Tsing Hua Univ.; 8 Y.-C. Chang, NARLabs-TSRI; P.-C. Wu, W. Xie, HangZhou DianZi University; Mingquan Bao, Ericsson; Christian M. Xu, HangZhou DianZi University; K. Xu, Friesicke, Fraunhofer Institute for Applied NARLabs-TSRI; H.-H. Tsai, NARLabs-TSRI; S.S.H. Hsu, National Tsing Hua HangZhou DianZi University; L. Sun, Solid State Physics; Sandrine Wagner, HangZhou DianZi University Fraunhofer Institute for Applied Solid Univ. State Physics; Ruediger Quay, Fraunhofer Institute for Applied Solid State Physics 08:20 Th1D-2: Sub-10-GHz Cryo-CMOS Th1B-2: Transfer Learning Framework Th1C-2: V-Band GaN Power Amplifier Th1E-2: A Novel Q-Choked Resonator for 3D Electromagnetic Structures MMICs with High Power-Bandwidth LNAs Achieving Up to 0.07-dB Average for Microwave Material Measurements and Low Gain Compression for RF Inter-NF Thanks to Back Biasing for Qubit Alleviating Sample Thickness O. Akinwande, Georgia Tech; S.L. Ganna, **Limitations of Existing Techniques** Satellite Links Readout in 28-nm FD-SOI Pennsylvania State Univ.; R. Kumar, Pennsylvania State Univ.; V. Puyal, CEA-LETI; Q. Berlingard, M. Celuch, QWED; M. Olszewska-Placha, C. Friesicke, Fraunhofer IAF; F. van Raay, 03:30 CEA-LETI; J. Lugo-Alvarez, CEA-LETI; QWED; L. Nowicki, QWED; W. Gwarek, Fraunhofer IAF; S. Krause, Fraunhofer M. Swaminathan, Georgia Tech IAF; B. Cimbili, Fraunhofer IAF; P. B. Blampey, CEA-LETI; M. Cassé, OWED Brückner, Fraunhofer IAF; R. Quay, CEA-LETI; D. Belot, STMicroelectronics Fraunhofer IAF; A. Colzani, SIAE MICROELETTRONICA; A. Traversa, SIAE MICROELETTRONICA; A. Traversa, SIAE MICROELETTRONICA; A. Fonte, SIAE MICROELETTRONICA 08:40 Th1B-3: Analysis of Two Wirelessly Th1C-3: Compact K/Ka-Band Frontend Th1D-3: A 1.6 mW Cryogenic SiGe LNA Th1E-3: Characterizing the Broadband Locked Oscillators Based on Realistic PA and LNA in 16nm FinFET for Next IC For Quantum Readout Applications **RF Permittivity of 3D-Integrated Layers Nonlinear Oscillator Models Generation Digitally Intensive Arrays** Achieving 2.6 K Average Noise in a Glass Wafer Stack from 100MHz Temperature from 3–6 GHz to 30GHz C. Moncada Guayazan, Universidad de E. Liu, ETH Zürich; B. Lin, ETH Zürich; C.-Y. Lu, TSMC; H. Wang, ETH Zürich J.T. Pawlik. NIST: T. Karpisz. NIST: Cantabria: F. Ramirez, Universidad de Z. Zou, UMass Amherst: S. Raman. Cantabria; A. Suarez, Universidad de UMass Amherst; J. Bardin, UMass N. Derimow, NIST; S.R. Evans, NIST; 5 J.C. Booth, NIST; N.D. Orloff, NIST; Cantabria Amherst C.J. Long, NIST; A.C. Stelson, NIST 8 Ś Th1B-4: Automated mmWave Power Th1C-4: A 31-41GHz SiGe Power Th1D-4: A 6mW Cryogenic SiGe Th1E-4: A Dielectric Permittivity Sensor **Receiver IC For High-Fidelity Qubit** Amplifier Design Flow and a 28-GHz Amplifier with Sandwiched-Coupler-Based on Inverted Microstrip/3D-Design Example in 45-nm CMOS SOI **Printing Hybrid Technology Balun and Folded-T-Line Power** Readout Combiner Achieving 23.5-dBm/22.2-Yaolong Hu, Rice Univ.; Xiaohan Zhang, S. Rustioni, Università di Pavia; R.C. Kwende, UMass Amherst; dBm Psat/OP1dB and Supporting Rice Univ.; Qiang Zhou, Rice Univ.; Fan D. Rosenstock, UMass Amherst; L. Silvestri, Università di Pavia; S. 64-QAM Modulation Cai, Keysight Technologies; Cindy Cui, C. Wang, UMass Amherst; J.C. Bardin, Marconi, Università di Pavia; G. Alaimo, ï Keysight Technologies; Taiyun Chi, Rice K. Xie, Tianjin Univ.; R. Wu, Tianjin Univ.; UMass Amherst Università di Pavia; F. Auricchio, K. Wang, Tianjin Univ. Università di Pavia; M. Bozzi, Università Univ. di Pavia Th1B-5: Analysis and Modeling of Th1E-5: Radar-Based Smoke Detection **Super-Regenerative Oscillators with** at Millimeter Wave Frequencies: An **Experimental Study**

F. Schenkel, Ruhr-Universität Bochum;

T. Schultze, Universität Duisburg-Essen;

C. Baer, Ruhr-Universität Bochum;

I. Rolfes, Ruhr-Universität Bochum;

C. Schulz, Ruhr-Universität Bochum

FMCW Signals

S. Sancho, Universidad de Cantabria;

- M. Ponton, Universidad de Cantabria;
- A. Suarez, Universidad de Cantabria

09:40

64

THURSDAY

IMS TECHNICAL SESSIONS 08:00 – 09:40 Thursday, 20 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

Microwave Field, Device & Circuit Techniques	Passive Components Active Compo	nents Systems & Applications Emerging Tec	chnologies & Applications Focus & Special St	essions
147AB	150AB	151AB	152AB	
Th1F: Insights on Vital-Sign Radars Chair: Alexander Koelpin, Technische Universität Hamburg, Germany Co-Chair: Davi V.Q. Rodrigues, University	Th1G: Who Needs Contact? Developments in OTA Measurements Chair: Marcus Da Silva, <i>National</i>	Th1H: Advances in Reconfigurable Intelligent Surfaces, Antennas, and Beamformers Chair: Nizar Messaoudi, Keysight	Th11: Device and Integration Technology for RF through mm-Wave Chair: Shahed Reza, Sandia National	
of Texas at El Paso	Instruments Co-Chair: Marco Spirito, Technische Universiteit Delft	Technologies Co-Chair: Najme Ebrahimi, <i>Northeastern</i> University	Laboratories Co-Chair: Ko-Tao Lee, <i>Qorvo</i>	08:
Th1F-1: Displacement Monitoring Using a Four-Channel Phase- and Quadrature Self-Injection-Locked (PQSIL) Radar with Channel Compression Demodulation (CCD) for Sensitivity	Th1G-1: Electro-Optic Mapping Techniques for Characterization of Microwave Circuits, Devices and Antenna Systems	Th1H-1: Scalable 32×32 1-Bit Reconfigurable Intelligent Surfaces for Upper-Mid Band 66 Communications S. Kim, Yonsei Univ: HS. Choi, Yonsei	Th1I-1: Ultra-Wide Bandgap MMW/ Sub-MMW Devices T. Oder, DEVCOM ARL	00
Improvement JX. Zhong, National Sun Yat-sen Univ.; JY. Shih, National Sun Yat-sen Univ.; FK. Wang, National Sun Yat-sen Univ.	K. Sabet, EMAG Technologies	Univ.; Bw. Min, tonsel Univ.		8:10
Th1F-2: Wavelet- and Cosine-Transform- Based Super-Resolution Algorithm (WCT-SRA) for Radar-Based Multi- Person Vital Sign Monitoring	Th1G-2: A Near-Field Quasi-Optical Measurement Technique for Probe- Fed High-Gain Backside-Radiating Antennas	Th1H-2: A Scalable, Binary Phase, Millimeter-Wave Reconfigurable Intelligent Surface	Th1I-2: An Adaptable In(Ga)P/Ga(Sb) As/Ga(In)As HBT Technology on 300mm Si for RF Applications	08:20
JY. Shih, National Sun Yat-sen Univ.; JX. Zhong, National Sun Yat-sen Univ.; YJ. Chu, National Sun Yat-sen Univ.; FK. Wang, National Sun Yat-sen Univ.	N. van Rooijen, Technische Universiteit Delft; M. Spirito, Technische Universiteit Delft; A. Bechrakis Triantafyllos, Technische Universiteit Delft; N. Llombart, Technische Universiteit Delft; M. Alonso-delPino, Technische Universiteit Delft	A.S. Shekhawat, Arizona State Univ.; B.G. Kashyap, Arizona State Univ.; R.W. Raldiris Torres, Arizona State Univ.; G.C. Trichopoulos, Arizona State Univ.	A. Kumar, IMEC; S. Yadav, IMEC; A. Vais, IMEC; G. Boccardi, IMEC; Y. Mols, IMEC; R. Alcotte, IMEC; B. Parvais, IMEC; B. Kunert, IMEC; N. Collaert, IMEC	03:30
Th1F-3: A Low-Power Low-Latency 84.5-GHz GaAs pHEMT Self-Injection- Locked Radar with Integrated Frequency	Th1G-3: Load-Impedance-Aware EIRP Calibration in FR2 Phased Arrays	Th1H-3: A Wideband Configurable Multi-Port Wire Antenna	Th1I-3: Local Interface RF Passivation Layer Based on Helium Ion-Implantation in High-Resistivity Silicon Substrates	08:40
Differentiator for Vital Sign Detection D. Gao, Rutgers Univ.; S. Li, Rutgers Univ.; M. Zhu, Rutgers Univ.; A.YK. Chen, CSUN; CT.M. Wu, Rutgers Univ.	Semiconductor, Inc.; Wan Jong Kim, Samsung Semiconductor, Inc.; Pranav Dayal, Samsung Semiconductor, Inc.; Venumadhav Bhagavatula, Samsung Semiconductor, Inc.; Ivan Lu, Samsung Semiconductor, Inc.; Chinh Doan, Samsung Semiconductor, Inc.	Y. Tousi, Univ. of Minnesota	M. Perrosé, CEA-LETI; P. Acosta Alba, CEA-LETI; S. Reboh, CEA-LETI; J. Lugo, CEA-LETI; C. Plantier, CEA-LETI; P. Cardinael, UCLouvain; M. Rack, UCLouvain; F. Allibert, Soitec; F. Milesi, CEA-LETI; X. Garros, CEA-LETI; JP. Raskin, UCLouvain	08:50
Th1F-4: Spectrum-Efficient Multi- target Vital Sign Monitoring Using Metamaterial-Integrated Space-Time-	Th1G-4: Toward Free Space Local Characterization Method in Microwave	Th1H-4: Spatial-Spectral Mapping Beamspace MIMO Receiver Enabled by a Programmable Space-Time-Modulated	Th1I-4: Large-Signal Characterisation and Analysis of AIN/GaN MISHEMTs on Si with a PAE > 62% at 28GHz	09:00
S. Li, Rutgers Univ.; D. Gao, Rutgers Univ.; S. Vosoughitabar, Rutgers Univ.; CT.M. Wu, Rutgers Univ.	M. Granger, Laboratoire Hubert Curien (UMR 5516); A. Ghaddar, Laboratoire Hubert Curien (UMR 5516); B. Bayard, Laboratoire Hubert Curien (UMR 5516); B. Sauviac, Laboratoire Hubert Curien (UMR 5516)	S. Vosoughitabar, Rutgers Univ.; A. Nooraiepour, Qualcomm; W. Bajwa, Rutgers Univ.; N. Mandayam, Rutgers Univ.; CT.M. Wu, Rutgers Univ.	R. ElKashlan, <i>IMEC</i> ; S. Yadav, <i>IMEC</i> ; A. Khaled, <i>IMEC</i> ; D. Xiao, <i>IMEC</i> ; B. Kazemi, <i>IMEC</i> ; H. Yu, <i>IMEC</i> ; A. Alian, <i>IMEC</i> ; U. Peralagu, <i>IMEC</i> ; N. Collaert, <i>IMEC</i> ; B. Parvais, <i>IMEC</i>	09:10
	Th1G-5: Simplifying Polarization Alignment in Modulated Antenna Measurements	Th1H-5: A Fully-Passive 4-Channel RF Beamformer with Ultra-Low Insertion Loss at 12GHz X/Ku-Band for Low-Power Applications in 28nm CMOS		09:20
	G. Orozco, National Instruments; T. Deckert, National Instruments; N. Yang, National Instruments	M.G. Anderson, Univ. of California, Berkeley; S. Krishnamurthy, Univ. of California, Berkeley; A. Niknejad, Univ. of California, Berkeley; J. Rabaey, Univ. of California, Berkeley		09:30
				09:40

Joint Session with ARFTG

THURSDAY

IMS TECHNICAL SESSIONS

10:10 - 11:50 Thursday, 20 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

Systems & Applications Emerging Technologies & Applications Microwave Field, Device & Circuit Techniques **Passive Components Active Components** Focus & Special Sessions 145AB 146A 146B 146C Th2D: Advances in Quantum Th2E: Near-Field Wave-Matter Th2B: HF Through UHF Techniques Th2C: Sub-Thz Power Amplifiers for and Applications **D-Band and Beyond Technologies** Interaction Chair: Yanghyo Rod Kim, Stevens Institute Chair: Kamel Haddadi, Université de Lille Chair: Frederick H. Raab, Green Mountain Chair: David Brown, BAE Systems of Technology Radio Research Co-Chair: Malgorzata Celuch, OWED Co-Chair: Sensen Li, University of Texas Co-Chair: Dimitris Pavlidis, Florida Co-Chair: Marc Franco, Macom at Austin International University 10:10 Th2B-1: A Modern HF/VHF/UHF Th2C-1: 220-GHz High-Efficiency Power Th2D-1: Demonstration of Microwave Th2E-1: Scanning Microwave Harvesting Through Pyroelectricity in Microscopy Subsurface Detection of Transceiver for All Applications -Amplifiers in 250-nm and 130-nm InP What Would it Look Like Today? HBT Technologies Having 14.4–25.0% **Cryogenic Conditions: A Quantum-to-**Magneto-Impedance Effect in Thin Film PAE and 40-60mW Pout **Experimental Approach** Permallov U.L. Rohde, Universität der Z. Griffith, Teledyne Scientific & Imaging; M. Aldrigo, M. Dragoman, A. Dinescu, G. Fabi, M. Sparey, M. Leitner, 10:20 Bundeswehr München M. Urteaga, Teledyne Scientific & D. Vasilache, S. Iordanescu, L.A. Dinu, A. Silvestri, I. Alic, V. Ney, A. Ney, Imaging; P. Rowell, Teledyne Scientific & IMT-Bucharest; D. Dragoman, University Johannes Kepler Universität Linz; Imaging of Bucharest; E. Laudadio, E. Pavoni, M. Farina, Università Politecnica delle L. Pierantoni, D. Mencarelli, Università Marche; G. Gramse, Johannes Kepler Politecnica delle Marche Universität Linz 10:30 Th2B-2: A 0.1-3.2GHz Reconfigurable Th2C-2: Low-Noise Power-Amplifier Th2D-2: A 4 to 10GHz 11-mW Cryogenic Th2E-2: Advanced Microwave LPF With Peaking Reducing and MMICs for the WR4.3 and WR3.4 Bands **Driver Module Design for Quantum** Impedance Microscopy for Emerging **Selectivity Enhancement Using Adaptive** in a 35-nm Gate-Length InGaAs mHEMT **Computer Application** Materials and Devices Impedance Transformation Technology C.-H. Li, ITRI; C.-N. Kuo, NYCU; C.-S. Chen, J. Shan, Univ. of California, Berkeley; X. Cheng, CAEP; Y. Rao, CAEP; X. Luo, N. Morrison, Univ. of California, Berkeley; F. Thome, Fraunhofer IAF; A. Leuther, ITRI; C.-D. Chen, Academia Sinica; P.-Y. CAEP; L. Zhang, CAEP; J. Han, CAEP; Hsu, ITRI; L.-C. Hsiao, Academia Sinica; Fraunhofer IAF E.Y. Ma, Univ. of California, Berkeley R. Wu, CAS; H. Tang, CAS; X. Liang, CAS; X. L.-W. Chang, Academia Sinica Deng, CAEP; H. Gao, Technische Universiteit Eindhoven 10:50 Th2B-3: High Isolation CMOS TDD Th2C-3: Highly-Compact 20-mW, Th2D-3: A Sub mW Low Flicker Noise Th2E-3: Near-Field Nonlinear 270-320-GHz InGaAs mHEMT Power **RF Front-End Using Sandwich-Type Cryo-CMOS QVCO for Quantum Microwave Microscope for Fundamental Concentric Vortical Transformer and** Amplifier MMIC **Computing Application Superconducting Studies** Leakage Elimination Technique C. Liang, XJTU; Y. Zhao, XJTU; Z. Guo, XJTU; Z. Gao, XJTU; B. Tang, XJTU; C. Fan, XJTU; C.-Y. Wang, Univ. of Maryland, College Park; S.M. Anlage, Univ. of Maryland, L. John, Fraunhofer IAF; A. Tessmann, Fraunhofer IAF; S. Wagner, Fraunhofer S.-H. Tsai, Taipei Tech: S.-J. Yang, Taipei Tech; Z.-T. Zhao, Taipei Tech; H.-S. Yang, IAF; A. Leuther, Fraunhofer IAF Y. Xin, XJTU; L. Geng, XJTU College Park ë Taipei Tech Th2B-4: A Monolithic GaN based Supply Th2C-4: Analysis and Design of Th2D-4: Characterizing a Frequency Th2E-5: A 3-D Split Ring Resonator for Modulator with Dual-Antibootstrap **Differential Complex Neutralization Converter Based on a Superconducting** Power-Efficient Microwave Plasma Jets Power Amplifiers for Efficient-Yet-Linear Level Shifter for Envelope Tracking **Coplanar Waveguide** M. Parsaei, Univ. of Toledo; M.R. Akram, Application **High mm-Wave Applications** G. Giesbrecht, NIST; N.E. Flowers-Jacobs, Univ. of Toledo; A. Semnani, Univ. of Chenhao Li, Institute of Microelectronics; M. Eleraky, ETH Zürich; T.-Y. Huang, NIST; A. Sirois, NIST; M. Castellanos-Toledo Qingyang Dong, Institute of Georgia Tech; Y. Liu, ETH Zürich; H. Wang, Beltran, NIST; M. Vissers, NIST; J. Gao, Microelectronics; Xin Jiang, Institute of ETH Žürich NIST; P. Dresselhaus, NIST; T. Barton, Th2E-6: A Highly-Efficient 2.45 GHz Microelectronics; Xinyu Liu, Institute of University of Colorado Boulder **Plasma Jet Based on A Dielectric** Microelectronics; Ke Wei, Institute of Microwave Anapole Structure Microelectronics; Weijun Luo, Institute of M.R. Akram, Univ. of Toledo; A. Semnani, **Microelectronics** Univ. of Toledo Th2C-5: A 10-230-GHz InP Distributed Th2B-5: Understanding Linearization and its Recent Amplifier Using Darlington Quadruple-**Developments** Stacked HBTs A. Katz, TCNJ P. Nguyen, Univ. of California, Davis; N. Wagner, Keysight Technologies; 11:40A. Stameroff, Keysight Technologies; A.-V. Pham, Univ. of California, Davis 11:50

IMS TECHNICAL SESSIONS 10:10 – 11:50 Thursday, 20 June 2024

WALTER E. WASHINGTON CONVENTION CENTER

Microwave Field, Device & Circuit Techniques	Passive Components Active Compo	nents Systems & Applications Emerging Tec	chnologies & Applications Focus & Special S	lessions
147AB	150AB	151AB	152AB	
Th2F: Advances in Microwave Biomedical Applications	Th2G: Advancing Characterization at mm-Wave Frequencies	Th2H: Advanced Circuits and Techniques for Next-Generation Wireless Systems	Th21: GaN Devices and Technology for Wireless Applications	
Chair: Christian Damm, <i>Universität Ulm</i> Co-Chair: Chung-Tse Michael Wu, <i>Rutgers University</i>	Chair: Shuhei Amakawa, Hiroshima University Co-Chair: Ricardo Figueiredo, Universidade de Aveiro	Chair: Kenneth E. Kolodziej, <i>MIT Lincoln</i> Laboratory Co-Chair: Marcus Pan, Semiconductor Research Corporation	Chair: Wolfram Stiebler, <i>Raytheon</i> Co-Chair: Peter Magnee, <i>NXP</i> Semiconductors	1
Th2F-1: Towards Ultra-Low RF Power Simultaneous Transmit and Receive(STAR) MRI with a Wearable RF Transceiver Head Coil	Th2G-1: Current Limitations and Novel Approaches to THz On-Wafer Electronic Characterization	Th2H-1: Active Calibration Approach Addressing Antenna Mutual Coupling and Power Amplifier Output Mismatch in Fully Digital MIMO Transmitters	Th2I-1: Overview of RF Power Amplifier Technology for Wireless Infrastructure and Future Trends	0:10
Zachary Colwell, Arizona State Univ.; Sri Kirthi Kandala, Arizona State Univ.; Lance DelaBarre, Univ. of Minnesota; Djaudat Idiyatullin, Univ. of Minnesota; Gregor Adriany, Univ. of Minnesota; Michael Garwood, Univ. of Minnesota; John Vaughan, Columbia Univ.; Sung-Min Sohn, Arizona State Univ.	J. Cheron, NIST	H. Barkhordar-pour, Univ. of Waterloo; J.G. Lim, Univ. of Waterloo; A. Ben Ayed, Univ. of Waterloo; P. Mitran, Univ. of Waterloo; S. Boumaiza, Univ. of Waterloo	F. van Rijs, <i>Ampleon</i>	10:20 10:
Th2F-2: Combined Gradient and RF Injection Tests for MR Safety	Th2G-2: On-Wafer Calibration Comparisons of Multiline TRL with Platinum and Gold Conductors	Th2H-2: Indirectly-Non-Reciprocal Load Modulated Balanced Amplifier with Equivalent Operation at Antenna	Th2I-2: A Heterogeneously-Integrated Ka-Band, N-Polar Gallium Nitride HEMT Amplifier	30
Univ. of Houston; J. Zheng, Univ. of Houston; J. Chen, Univ. of Houston	T. Karpisz, <i>NIST</i> ; J.T. Pawlik, <i>NIST</i> ; J. Hoffmann, <i>META</i> S; S.R. Evans, <i>NIST</i> ; C.J. Long, <i>NIST</i> ; N.D. Orloff, <i>NIST</i> ; J.C. Booth, <i>NIST</i> ; A.C. Stelson, <i>NIST</i>	Interface N.B. Vangipurapu, Univ. of Central Florida; N.B. Vangipurapu, Univ. of Central Florida; P. Gong, Univ. of Central Florida; J. Guo, Univ. of Central Florida; K. Chen, Univ. of Central Florida	J.J. Kim, Pseudolith/C; M.D. Hodge, Pseudolith/C; M.R. Soler, Pseudolith/C; F. Herrault, Pseudolith/C; D.S. Green, Pseudolith/C; J.F. Buckwalter, Pseudolith/C	10:40
				10:
Th2F-3: Extension to In Situ Single Cell Electroporation of a Microwave Biosensor	Th2G-3: Enhanced Accuracy in On- Wafer Noise Figure Measurements at Sub-Terahertz Frequencies	Th2H-3: An Efficient Analog Self- Interference Canceller Using a Balanced Topology for Mitigating Inherent Multi-	Th2I-3: Ka Band GaN MIS-HEMT with ALD-SIN Gate Dielectric and Lp-SiN Passivation Layer	0
A. Calvel, LAAS-CNRS; O. Peytral-Rieu, LAAS-CNRS; MP. Rols, IPBS-CNRS; D. Dubuc, LAAS-CNRS; K. Grenier, LAAS-CNRS	N. Messaoudi, Keysight Technologies; S. Gao, Focus Microwaves; M.W. Mansha, Nokia Bell Labs; Y. Baeyens, Nokia Bell Labs; M. Sayginer, Nokia Bell Labs; S. Boumaiza, Univ. of Waterloo; B. Hosein, Focus Microwaves; S. Shahramian, Nokia Bell Labs	K.D. Bhakta, Naval Air Warfare Center Weapons Division; J.P. Santos, Naval Air Warfare Center Weapons Division; M. Panahi, Univ. of California, Los Angeles; M. Hedayati, Univ. of California, Los Angeles; L.K. Yeung, Univ. of California, Los Angeles; Y.E. Wang, Univ. of California, Los Angeles	K. Wei, CAS; Y. Zhang, CAS; S. Zhang, CAS; X. He, CAS; J. Guo, CAS; K. Wang, CAS; R. Zhang, CAS; X. Wang, CAS; S. Huang, CAS; H. Ying, CAS; Y. Li, CAS; W. Luo, CAS; J. Niu, CAS; X. Liu, CAS	11:00 1
Th2F-4: RF Interference Cancellation for	Th2G-4: Measurement of Residual Phase Noise of Amplifiers at 80GHz	Th2H-4: Integrated 75-100 GHz In-Band	Th2I-4: Characterization and Modeling	1:10
J. Dunbar, University of Colorado Boulder;	Using Interferometric Measurement Technique	S. Johannes, University of Colorado	MMIC Power Amplifiers	
G. Santamaría-Botello, Colorado School of Mines; Z. Popovic, University of Colorado Boulder	W. Wendler, Rohde & Schwarz; A. Roth, Rohde & Schwarz	Colorado Boulder, Z. Popovic, University of Colorado Boulder	A. Divinyi, Saab; J. Bremer, Chalmers Univ. of Technology; M. Thorsell, Chalmers Univ. of Technology; M. Thorsell, Chalmers Univ. of Technology	11:20
	Th2G-5: Millimeter-wave Device	Th2H-5: A Compact 130 GHz CMOS		11:30
	Characterization Under Wideband Modulated Signals using Vector Network Analyzer Frequency Extenders	OOK-Doubler with Embedded 10 Gb/s Modulator and Integrated Glass Antenna for Scalable Array Systems and Efficient Short-Range Communication		_
	A. Ben Ayeo, Univ. of Waterloo; P. Mitran, Univ. of Waterloo; S. Boumaiza, Univ. of Waterloo	S.Z. Aslam, Univ. of Florida; H. Yan, Univ. of Florida; M. Asghari, Univ. of Florida; N. Ebrahimi, Northeastern University		11:40
				11:50

INDUSTRY WORKSHOPS

08:00 - 15:10

WALTER E. WASHINGTON CONVENTION CENTER

Room: 207AB

Thursday, 20 June 2024

SESSION CODE	TIME & Location	TITLE AND ABSTRACT	SPEAKER/S, AFFILIATION
IWTH1	08:00 - 09:40 Room: 144C	Machine Learning (ML) and Analysis Advancements Embedded in a Complete High-Frequency Design Flow —Simulation, DRC, LVS, ERC, EM, PI, Thermal, Minimal Routing, Performance, Price, and Manufacturability all complicate and restrict design space. Increasing design and system complexity require designers to consider individual designs within the larger system earlier in the design flow to maximize system performance. Cadence's complete design flow with EM and Thermal Analysis is the backbone infrastructure needed for the next generation of designs. In this workshop, we will review the complete flow and introduce the audience to the ML capabilities within the Virtuoso flow to aid design- ers in satisfying increased requirements and exploring additional solutions.	Michael Thompson, Sanam Vakili, Claudia Roesch, Kerry Judd, Ron Pongratz, <i>Cadence Design System</i> s
IWTH2	10:10 - 11:50 Room: 144C	Design Flow for the Assembly and Analysis of 3D Heterogenous Integrated Technologies —What happens to your chip's performance when it is placed in the package? How close is "too close" when placing multiple chips next to each other? Does the loop height of that bondwire impact your RF output? Does the void in board below your chip impact the operating bandwidth? Wouldn't you like to know BEFORE you go to manufacturing? Now you can! Here is a design flow that is built to do 3D Heterogenous Integration and it can be easily integrated with several EDA tools including ADS, Virtuoso, Custom Compiler, and Tanner.	Nathan Altaffer, Keysight Technologies
IWTH3	13:30 - 15:10 Room: 144C	FPGA-Accelerated Deep Learning for 5G FR2 Channel Estimation—Ever increasing demand for high throughput, low latency, and ultra reliability in wireless transmission requires accurate channel estimation under impairment conditions including Doppler shifts and noise. Traditional techniques for channel estimation in 5G NR involve known pilot sequences inserted into the transmission from which the rest of the channel response can be interpolated across all sub-carriers. This workshop will demonstrate a convolutional neural network (CNN) for channel estimation using OTA measurements through mmWave PAAM and AMD RFSoC-based 5G NR receiver in a CATR chamber. Training is accelerated by combining MATLAB with hardware-based channel impairments including AWGN and variable carrier-frequency offsets.	Luc Langlois, Avnet; Fab- rício Dourado, Rohde & Schwarz GmbH & Co KG; Yoshiharu Fujisaku, Fuji- kura Ltd.; Noam Levine, The MathWorks

IMS PANEL SESSION12:00 - 13:30Thursday, 20 June 2024PL6: Weather vs Wireless: How Do We Balance the Use of

Critical Microwave Bands?

ORGANIZERS:

Renee Leduc, Narayan Strategy Paolo de Matthaeis, NASA Goddard Space Flight Center

Beau Backus, Applied Physics Laboratory at Johns Hopkins University

ABSTRACT: A recent high profile spectrum conflict has been between weather forecasters and the wireless industry on the use of passive microwave spectrum. While both sides are addressing critical economic and societal needs, there are many questions about the possibility for and impacts of coexistence, especially related to 50-58 GHz, which will be considered at the World Radiocommunication Conference-2027. The wireless industry, as it deploys 5G technologies and plans for 6G, has a critical need to expand its access to spectrum to support the deployment of numerous wireless technologies that fuel economies and international competition. But the world is also facing increasing weather and climate related disasters that rely on improvements in environmental prediction to keep people and communities safe. Eighteen disasters in the US in 2022 (the third highest) had damage values above \$1 billion (and an overall cost of \$177.3 billion with 474 deaths). This panel discussion will feature high level panelists from across the public, private and NGO sectors to discuss the increasing demand for passive microwave spectrum for both wireless tech and meteorology. The discussion will seek to foster more productive science and engineering discussions on these topics and highlight possible solutions for coexistence.

				WALTER	E. WASHINGTON CONVENTION CENTER
MICF	ROAPPS	3	09:30 - 15:00	Thursday, 20 June 2024	MicroApps Theater: Booth 2159
SESSION CODE	TIME	TITLE			SPEAKER/S, AFFILIATIONS
THMA1	09:30 - 09:45	Bandwidth Trad	es in Passive Microwave Co	mponents	Shaun Moore, Quantic TRM
THMA2	09:45 - 10:00	Highly Efficient Having Rotation	BOR FEM Simulation of Ant nal Symmetries	ennas and Waveguide Structures	Ralf Ihmels, Mician GmbH
THMA3	10:00 - 10:15	Impedance-Tun	er Matching in XFdtd		Justin Newton, Remcom, Inc.
THMA4	10:15 - 10:30	26-30GHz USB	Controlled Scalable Modul	ar TX/RX Beamformer	Sidina Wane, eV-Technologies
THMA5	10:30 - 10:45	Beam Direction of 256 Element	Accuracy and 2D Radiation s Phased Array	Antenna Pattern Measurements	Yujiro Tojo, <i>Fujikura Ltd.</i>
THMA6	10:45 - 11:00	How to Measure Necessary Perf	e Beam Switching Speed, W ormance?	hy is it Important and What is the	Fabricio Dourado, <i>Rohde & Schwarz</i> ; Yujiro Tojo, <i>Fujikura Ltd</i> .
THMA7	11:00 - 11:15	Automation of 4 Wincal 5.0	Port Multiline TRL Calibrat	tion on the Keysight pna Using	James Hibbert, Formfactor
THMA8	11:15 - 11:30	Use an Array When a Standard PCB Connector Won't Do			Kiana Montes, Samtec
THMA9	11:30 - 11:45	A Compact USB-Controlled 16-32 GHz Dual-Channel Up & Down Converter VNA Extender Module			Sidina Wane, eV-Technologies
THMA10	11:45 - 12:00	Advantages of Harmonic Downconverters for Tuned Receiver Applications			Madrone Coopwood, HYPERLABS
THMA11	12:00 - 12:15	Design Technology Co-Optimization (DTCO) for RF Circuit with GaN-based Devices			Nelson de Almeida Braga, Synopsys, Inc.
THMA12	12:15 - 12:30	Interoperable D Design	esign Platforms Support Hi	gh-frequency Silicon MMIC	Johana Yan, <i>MaXentric Technologies</i> ; Dustin Hoekstra, <i>Cadence Design Systems;</i> Daniel Mejia, <i>MaXentric Technologies</i>
THMA14	12:45 - 13:00	Using Load Pull Amplifiers	Simulation and Optimization	on to Design Doherty Power	Andy Howard, Keysight Technologies
THMA19	13:00 - 14:00	StartUp Program Panelists: Theo	m Panel Session: Voice of th Williams, <i>Third Vector;</i> Shern	ne Customer nan William, <i>AIN Ventures;</i> David Bec	ck, U.S. Space Force; Ian Adams, NASA
THMA15	14:00 - 14:15	Digitally Enhanced mmWave Link Via Digital Twin for Scalable 5G Deployment			Rui Ma, pSemi; Giorgia Zucchelli, The MathWorks B.V.
THMA16	14:15 - 14:30	Benefits of Ultra-Low Phase Noise Frequency Synthesis to Space and Terrestrial Applications			Sarah Schnoll, Narda-Miteq
THMA17	14:30 - 14:45	Improving Synthesizer Performance with Ultra-low Phase Noise Frequency References			Mike Sawicki, Quantic Wenzel
THMA18	14:45 - 15:00	Achieving Exception Switches with a	otional RF Performance for Unique GaAs Semiconduct	Low Noise Amplifiers and RF or Process	Joe Simanis, Nisshinbo Micro Devices Inc.

Sponsored By:

ROHDE&SCHWARZ

Make ideas real

STARTUP PANEL SESSION13:00 - 14:00TVoice of the Customer Panel Session

Hear directly from the decision makers. This panel is comprised of active investors, program managers, and large primes (pending), sharing keen insights into how startups can break into doing business with their organizations.

PANELISTS:

Theo Williams, Third Vector

Sherman William, AIN Ventures

David Beck, U.S. Space Force

Thursday, 20 June 2024

MicroApps Theater, Booth 2159

THURSDAY

Gubscribe/Renew Toolate

Get your FREE subscription to Microwave Journal and access:

mw ournal com

- In-Depth, Technical Articles
- Insights from Industry Leaders
- Focused Reports
- Product & Industry News
- eLearning Opportunities
- Video and Podcast Libraries
- Print/Digital Editions
- Technical eBooks

Scan the QR code

OR

Text your email address to 857-226-4250 to receive the MWJ digital magazine each month.*

*Message & data rates may apply. Reply HELP for help, STOP to cancel. For privacy & terms go to txtm.cc/PGBYA.

Get Social!

Join the RF and Microwave Community Group Over 83,000 members! mwjournal.com/linkedin

> Like Us on Facebook mwjournal.com/facebook

Follow Us on X @Pathindle @MWJEric @MWJ Editor

IMS POSTDEADLINE PAPER SESSION 13:30

13:30 – 15:10 Thursday, 20 June 2024

4 Ballroom

The IMS2024 PostDeadline Paper Session will be a major new feature and technical highlight of the conference. A limited number of PostDeadline papers will be selected for presentation, and only those judged to be truly outstanding and compelling in their timeliness will be accepted. Each PostDeadline paper presentation will be 12 minutes in duration with a 3-minute Q&A period.

The accepted papers will be announced at the IMS Plenary Session on Monday, 17 June 2024 and can be viewed on the IMS website: www.ims-ieee.org/postdeadlinepapers.

IMS CLOSING SESSION15:30 - 17:00Thursday, 20 June 2024BallroomReal-world PerformanceMeasurements of CellularNetworks Using Smartphones

KEYNOTE SPEAKER: Monisha Ghosh, Professor of Electrical Engineering, University of Notre Dame and Former Chief Technology Officer at the Federal Communications Commission (FCC)

Monisha Ghosh, IMS Closing Session Keynote Speaker **ABSTRACT:** As 5G deployments increase in the newly allocated mid-band and mmWave spectrum, and discussions on 6G begin, it is important to characterize real-world performance of the enhancements made to 5G to determine how best to design the next generation of cellular networks. For example, how well does massive MIMO work in the real-world? How is sharing in CBRS performing? In this talk we will present recent results from detailed measurements of 4G and 5G in the various bands: mmWave (> 24 GHz), mid-band (2.5 - 3.98 GHz) and CBRS (3.55 - 3.7 GHz). Our studies demonstrate that mmWave 5G is severely limited in coverage, especially outdoors-to-indoors, while performance of 5G in mid-band also depends on network densification, contrary to popularly held beliefs. Our studies in CBRS show that secondary co-channel sharing as well as adjacent channel interference from high power deployments pose fundamental challenges for cellular networks in shared spectrum. We conclude with some directions for future network design based on our research that will allow 6G to be "sharing native".

SPEAKER BIO: Monisha Ghosh is a Professor of Electrical Engineering at the University of Notre Dame and a member of the Notre Dame Wireless Institute. She is also the Policy Outreach Director for SpectrumX, the first NSF Center for Spectrum Innovation and the co-chair of the FCC's Technological Advisory Council (TAC) Working Group on Advanced Spectrum Sharing, 2022 - 2023. Her research interests are in the development of next generation wireless systems: cellular, Wi-Fi and IoT, with an emphasis on spectrum sharing and coexistence. Prior to joining the University of Notre Dame in 2022, she was the Chief Technology Officer at the Federal Communications Commission, a Program Director at the National Science Foundation, Research Professor at the University of Chicago and spent 24 years in industry research at Bell Labs, Philips Research and Interdigital working on a wide variety of wireless systems: HDTV, Wi-Fi, TV White Spaces and cellular. She obtained her B.Tech from IIT Kharagpur in 1986 and Ph.D. from USC in 1991. She is a Fellow of the IEEE.

103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE—ADVANCED MEASUREMENT TECHNIQUES FOR NEXT-G COMMUNICATION SYSTEMS

NVNA USERS' FORUM open to all conference attendees			
Thursday, 20 June 2024	15:00 - 16:15	143ABC, Walter E. Washington Convention Center	
ORGANIZER: Gia Ngoc Phung, Physikalisch-Technische Bundesanstalt (PTB)			
ON-WAFER USERS' FORUM open to all conference attendees			
Thursday, 20 June 2024	16:15 - 17:30	143ABC, Walter E. Washington Convention Center	

ORGANIZER: Gia Ngoc Phung, Physikalisch-Technische Bundesanstalt (PTB)

Promote your company to key purchasing decisionmakers in the microwave and RF engineering community.

IEEE Microwave Magazine

IEEE Microwave Magazine focuses on engineering and theory associated with microwave/ millimeter-wave technology and components, electronic devices, guided wave structures and theory, electromagnetic theory, Radio Frequency Hybrid and Monolithic Integrated Circuits, including mixed-signal circuits, and systems from a few MHz to THz. Browse Microwave Magazines' options for building brands and reaching decision makers. All are designed to align your company with MTT-S's respected and authoritative editorial content.

IEEE

Microwave eNewsletter

The IEEE Microwave eNewsletter is delivered monthly to IEEE MTT Society Members, IEEE Microwave Magazine subscribers, attendees of IEEE MTT-S conferences and events, and other opt-in newsletter subscribers. We cover timely, and newsworthy papers and articles from IEEE MTT-S journals, magazines, and conference proceedings. While the newsletter features new content on an every-other-month basis, it continues to be distributed to subscribers on a monthly cadence to sustain high engagement levels.

MTT-S Student Newsletter

MTT-S Webinars

The MTT-S Student Newsletter is published quarterly as a service to student members and graduate student members of the MTT-Society. The student newsletter includes articles on emerging technologies selected from IEEE Microwave Magazine, scholarship information for students, announcements of upcoming microwave events, student competitions, travel grants, deadlines for nominations, applications, membership information and calls for papers. It is sent to every student and graduate student member with an e-mail address on record at IEEE membership services.

The brightest minds discussing the biggest topics.

leading experts that attract the audience interested

in your technology. With branded registration pages

and custom content to build brand awareness, your

engagement and effectiveness, MTT-S Webinars are

logo will be seen throughout the webinar, driving

viewers to your site. With reporting to measure

the perfect way to capture quality leads.

MTT-S Webinars are live online presentations by

MTT-S Whitepaper Promotions

Put your valuable technical content in front of the IEEE audience. MTT-S Whitepapers generate valuable qualified sales leads and improve upon your lead nurture strategy while raising awareness and visibility of your company's products and services and provide a platform for product evaluation. Influence the buying decisions and revenue potential of your clients and prospects.

IEEE MTT-S Website

Advertising on the MTT-S website provides a unique opportunity to reach a highly targeted and influential audience of over 11,000 microwave engineering professionals worldwide. By advertising on the MTT-S platform, you can increase brand visibility, showcase your products and services, and position yourself as a thought leader.

For more information, please contact:

Erik Albin ealbin@naylor.com (352) 333-3371

IEEE Advertising

IEEE@naylor.com

Automatic RF Techniques Group

103RD ARFTG MICROWAVE MEASUREMENT CONFERENCE		
Advan	ced Measurement Techniques for Next-G Communication Systems	
	07:55-08:00 Welcome to the 103rd ARFTG Conference – Introduction	
07:55-08:00	Welcome	
	08:00-08:40 Keynote: Approaches to Industrialize and Characterize Near-THz Communication Systems	
	Session A: Measurements for 6G and Future-G systems Session Chair: Jon Martens	
A-1 08:40-09:00	Wideband Vector Signal Generation Using Multiple Narrowband Phase-Coherent Synchronous Signal Channels Zi Jun Su (University of Waterloo)*; Ahmed Ben Ayed (University of Waterloo); Slim Boumaiza (University of Waterloo,Canada)	
A-2 09:00-09:20	Comparison of Signal Generation Techniques for D-Band for Component Testing Zi Jun Su (<i>University of Waterloo</i>); Nizar Messaoudi (<i>Keysight Technologies, University of Waterloo</i>)*; Ahmed Ben Ayed (<i>University of Waterloo</i>); Jean-Pierre Teyssier (<i>Keysight Technologies</i>); Slim Boumaiza (<i>University of Waterloo, Canada</i>)	
A-3 09:20-09:40	Characterization Methods for Millimeter Wave IQ Mixers on the Example of a Planar Star Mixer Patrick Umbach (<i>Fraunhofer IAF</i>)*; Fabian Thome (<i>Fraunhofer IAF</i>); Arnulf Leuther (<i>Fraunhofer IAF</i>); Ruediger Quay (<i>Fraunhofer IAF</i>)	
	09:40–10:40 BREAK – EXHIBITS AND INTERACTIVE FORUM	
	Session B: Characterization of Material Properties Session Chair: Rusty Myers	
B-1 10:40-11:00	Temperature Humidity Bias Testing of a Wafer Embedded Coplanar Waveguide Line up to 40 GHz Lewis J Manning (National Physical Laboratory)*; Ana Robador (National Physical Laboratory); James A Skinner (National Physical Laboratory)	
B-2 11:00-11:20	Complex Permittivities of Ultra-Low-Loss 4H-SiC from 55 GHz to 330 GHz Yoshiyuki Yanagimoto (<i>EM labs, inc.</i>)	
B-3 11:20-11:40	High Frequency Characterization of Ajinomoto Build-Up (ABF) Laminates for Millimeter Wave Applications Aditya Jogalekar (Texas Instruments)*; Rajen Murugan (Texas Instruments); Mahadevan Iyer (Amkor Technologies Inc.); Rashaunda Henderson (The University of Texas at Dallas)	
B-4 11:40-12:00	Characterization of Dielectric Materials at WM-380 Band (500 - 750 GHz) Using Three Broadband Measurement Techniques Xiaobang Shang (National Physical Laboratory)*; Minjie Shu (Xi'an Jiaotong University); Mira Naftaly (National Physical Laboratory); Nick Ridler (National Physical Laboratory); Stephen Hanham (Imperial College London)	
	12:00–13:20 AWARDS LUNCHEON	
	Session C: mm-Wave and Sub-THz Measurements Session Chair: Marco Spirito	
C-1 13:20-13:40	Construction and Initial Studies on a 0.6 mm Coaxial Calibration Kit to 220 GHz Jon Martens (<i>Anritsu</i>)*; Tom Roberts (<i>Anritsu</i>)	
C-2 13:40-14:00	Modified Semi-Additive Manufacturing of PCBs for Enabling Accurate Device Measurements at Millimeter-Wave and Sub-Terahertz Frequencies Arash Arsanjani (Graz University of Technology)*; Ziad Hatab (Graz University of Technology); Ahmad Bader Althoman Alterkawi (AT&S AG); Michael E Gadringer (Graz University of Technology); Wolfgnag Bösch (Technical University of Graz)	
C-3 14:00-14:20	Repeatability of Programmable Waveguide Attenuators at 110-170 GHz and 220-330 GHz Piyaphat Phukphan (University of Oulu)*; Juha-Pekka Mäkelä (University of Oulu); Klaus Nevala (University of Oulu); Aarno Pärssinen (University of Oulu); Marko E. Leinonen (University of Oulu)	
C-4 14:20-14:40	Experimental Determination of the Internal Aperture Dimensions of Sub-Terahertz Waveguides James A Skinner (National Physical Laboratory)* Nick Ridler (National Physical Laboratory)	

FRIDAY

14:40–15:30 BREAK – EXHIBITS AND INTERACTIVE FORUM		
	Session D: Advances in Linear and Non-linear Measurements Session Chair: Patrick Roblin	
D-1 15:30-15:50	Cold-Termination Noise-Parameter Measurements at Cryogenic Temperatures Marwa Safa (<i>University of Calgary</i>)*; Ismail Majed (<i>University of Calgary</i>); Leo Belostotski (<i>Nil</i>); Karl Warnick (<i>Brigham Young University</i>); Christopher Groppi (<i>Arizona State University</i>)	
D-2 15:50-16:10	Traceable RF Power Metering Procedures With Thermoelectric Sensors Zenn Roberts (<i>National Institute for Standards and Technology</i>)*; Aaron Morgan Hagerstrom (<i>National Institute of Standards and Technology</i>); Daniel C Gray (<i>National Institute of Standards and Technology</i>); Christian Long (<i>NIST</i>); Angela Stelson (<i>NIST</i>); Vincent Neylon (<i>NIST</i>)	
D-3 16:10-16:30	Comparative Study on De-embedding of Highly Assymetrical Differential Devices using Multimode TRL and Applicability of Mode Separation Milan Rother (Technische Universität Braunschweig)*; Martin Maier (Technische Universität Braunschweig); Franz Engelsberger (Infineon); Macej Wojnowski (Infineon); Vadim Issakov (Technische Univ	
D-4 16:30-16:50	Linearizability Assessment of a 3.5 GHz 16-Chain Fully Digital MIMO Transmitter Under Wideband Modulated Signals Hoda Barkhordarpour (University of Waterloo)*; Jin Gyu Lim (University of Waterloo); Ahmed Ben Ayed (University of Waterloo); Patrick Mitran (University of Waterloo); Slim Boumaiza (University of Wa	
D-5 16:50-17:10	RF Power Amplifier Model Extraction for Accurate and Fast Load Pull Simulations with Wideband Signals Wissam Saabe (<i>Amcad Engineering</i>)*; Christophe Maziere (<i>Amcad Engineering</i>); Arnaud Delias (<i>Amcad Engineering</i>); Sebastien Mons (2XLIM, UMR n°7252, University of Limoges); Edouard Ngoya (XLIM, UMR n°7252, University of Limoges)	
	Poster Session Session Chair: Patrick Roblin	
Comparison of S-Pa	arameter Measurement Methods for Attenuators	
Andreas Schramm (1	PTB)*	
Smart Signals: Key	to Decrease Measurement Time?	
Yves Rolain (VUB)*;	Sander De Keersmaeker (<i>Vrije Universiteit Brussel</i>); Dries Peumans (<i>Vrije Universiteit Brussel</i>); Gerd Vandersteen (<i>VUB</i>)	
Exploring Phase Ski	e w in Load-pull Configurations	
Alex K. Chang (Maur	y <i>Microwave</i>); Rafael Lopez (<i>Maury Microwave</i>); John J. Dominguez (<i>Maury Microwave</i>); Osman Ceylan (<i>Maury Microwave</i>)*	
Uncertainty in Vector	or Mixer Measurements Using Harmonic Phase Reference Calibration	
Joel Dunsmore (Keys	sight Technologies)	
Calibration of an Os	scilloscope-Based NVNA for Periodic Modulated Signals	
Miles Lindquist (Ohi	o State University)*; Patrick Roblin (Ohio State University)	
A Fast High Sensitive	v ity Power Transfer Device Approach for (sub)mm-wave Applications	
Marco Spirito (TU De	elft)*; Carmine De Martino (<i>Vertigo Technologies)</i> ; Juan Bueno Lopez (<i>TU Delft</i>); Ehsan Shokrolahzade (<i>TU Delft</i>); Marco Pelk (<i>TU Delft</i>);	
Bart Louwes (THUAS	e)	
Ultra-Fast Characte	erization Setup for Empirical Optimization of Dual-Input Power Amplifiers	
Shuichi Sakata (Mits	subishi Electric Corporation)*; Shinro Yatsuda (Shonan Institute of Technology); Ayano Yano (Shonan Institute of Technology); Rikito Matsuo	
(Shonan Institute of	Technology); Yuji Komatsuzaki (Mitsubishi Electric Corporation); Shintaro Shinjo (Mitsubishi Electric Corporation); Takana Kaho (Shonan Institute	
of Technology); Koji	Yamanaka (Mitsubishi Electric Corporation)	
A 2-Tier TRL Calibra	t ion Technique to Assess Flip-Chip Interconnects at D-Band	
Nick van Rooijen (TU	I Delft)*; Rik Bokhorst (TU Delft); Sander Dorrestein (CITC, TNO); Francesca Chiappini (CITC, TNO); Paolo Sberna (TU Delft); Nuria Llombart (TU	
Delft); Marco Spirito	(TU Delft); Maria Alonso-delPino (TU Delft)	
On-wafer Character	risation of Noise Parameters of GaN HEMTs at Between 77 K and 400 K	
Jing Wang (Universit	y of Glasgow)*; Afesomeh Ofiare (University of Glasgow); Qingxia Li (University of Glasgow); James Kelly (University of Glasgow); Edward Wasige	
(University of Glasgo	w); Chong Li (University of Glasgow)	
Using Commercial S	Source Measure Units for Traceable RF Power Measurements	
Daniel C Gray (Natio	nal Institute of Standards and Technology)*; Aaron Morgan Hagerstrom (National Institute of Standards and Technology); Zenn Roberts (National	
Institute of Standard	Is and Technology); Christian Long (NIST)	
Inclined vs. Horizon	tal Waveguide Port Saver Approach in WR3.4 Band for On-Wafer Measurements	
Pranav Kumar Shriva	astava (FormFactor GmbH)*; Gavin Fisher (FormFactor GmbH); Giancarlo Chirico (FormFactor GmbH)	
Efficient Computat	ional Complexity Reduction of Digital Predistortion Using PLS Method for Beamforming Systems	
Dusari Nageswara R	ao (IIT Roorkee)*; Meenakshi Rawat (Indian Institute of Technology, Roorkee)	
Inverted Scanning I	Microwave Microscopy of GaN/AIN High-Electron Mobility Transistors	
Xiaopeng Wang (Cor	nell University)*; Kazuki Nomoto (Cornell University); Gianluca Fabi (Cornell University); Richard Al Hadi (École de technologie supérieure); Marco	
Farina (Marche Poly	technic University); Debdeep Jena (Cornell University); Huili Grace Xing (Cornell University); James C. M. Hwang (Cornell University)	

Exhibit Hall Hours and Happenings

EXHIBIT HOURS:

Tuesday, 18 June	09:30 - 17:00
Wednesday, 19 June	09:30 - 18:00
Thursday, 20 June	09:30 - 15:00
TUESDAY:	
Professional Headshots in the	
Societies Pavilion (Booth 1605)	09:30 - 17:00
IMS Game Zone (Booth 1366)	09:30 - 17:00
StartUp Pavilion (Booth 2343)	09:30 - 17:00
IMS Student Design Competitions (Booth 2439)	09:30 - 17:00
MicroApps Seminars (Booth 2159)	09:30 - 17:00
Coffee Break	09:40 - 10:10
StartUp Panel Session:	
Voice of the Founder Industry (Booth 2159)	11:00 - 12:00
Sweet Treat Tuesday	12:30
Coffee Break	15:10 - 15:40
IMS Executive Forum (Booth 2159)	16:00 - 17:00

WEDNESDAY:

Professional Headshots in the	
Societies Pavilion (Booth 1605)	09:30 - 18:00
IMS Game Zone (Booth 1366)	09:30 - 18:00
StartUp Pavilion (Booth 2343)	09:30 - 17:00
Build a "Foxhole" Radio Receiver (Booth 2431)	09:30 - 17:00
MicroApps Seminars (Booth 2159)	09:30 - 18:00
Coffee Break	09:40 - 10:10
StartUp Panel Session: SBIR/STTR (Booth 2159)	13:30 - 14:30
Coffee Break	15:10 - 15:40
IMS Interactive Forum (Booth 2505)	15:10 - 17:20
The Next Top StartUp Competition:	
Paving Paths to Financial Success (Booth 2159)	17:00 - 18:00
Industry Hosted Reception	17:00 - 18:00

THURSDAY:

Professional Headshots in the	
Societies Pavilion (Booth 1605)	09:30 - 15:00
IMS Game Zone (Booth 1366)	09:30 - 15:00
StartUp Pavilion (Booth 2343)	09:30 - 15:00
Build a "Foxhole" Radio Receiver (Booth 2431)	09:30 - 15:00
STEM Robotics Demonstration (Booth 2621)	09:30 - 15:00
MicroApps Seminars (Booth 2159)	09:30 - 15:00
Coffee Break	09:40 - 10:10
StartUp Panel Session:	
Voice of the Customer (Booth 2159)	14:00 - 15:00

Visit the Societies Pavilion (Booth 1605) to learn more about the IEEE Microwave Theory & Technology Society (MTT-S) as well as other IEEE Societies!

> Visit the IEEE MOVE Truck near the Societies Pavilion (Booth 1605) to learn how the truck is deployed to respond to hardest hit disaster areas that frequently have no power or communications. Come see the application of RF expertise!

Stop by the StartUp Pavilion (Booth 2343) to engage with up and coming companies in the RF & Microwave space! Participants include: Aerospace BD AnTrust • BoldRF LLC • Cheshir Industries Inc. COTS RF • Falcomm Inc. • InCirT • K-PA Inc. Lintrinsic Devices • Nullspace, Inc. PseudolithIC Inc. • Thintronics Inc. TransEON Inc.

IMS2024

IMS2024 EXHIBITOR LIST AS OF 14 MAY 2024 | For the most up-to-date information, please visit: ims-ieee.org

2pi-Labs GmbH	2254
3D Glass Solutions Inc.	1328
3G Shielding Specialties	2043
3H Communication Systems	211
3Rwave	1753
603 Manufacturing	1205
A-Alpha Waveguide	1311
Aaronia AG	224
ABI-American Beryllia Inc.	2315
ACE-Accurate Circuit Engineering	2344
ACEWAVETECH	646
ACST GmbH	2410
Admotech Co. Ltd.	1151
Adsantec Inc.	357
AdTech Ceramics	947
Advanced Circuitry International	1944
Advanced Energy	2409
Advanced Microwave Components	243
Advanced Test Equipment Corp	313
Aerosnace BD	2343
Aerowave Components LLC	2010
Actowave components LLo	1010
Accident Recimology	1012
Add Multi Material America Inc.	1/61
Agne Microwave	1401
	1307
A-INFO INC.	324
AJ IUCK CO.	1914
Akoustis inc.	421
Alaris USA	1861
AllSpice.io	506
ALMI/Sumitomo Electric USA	527
Altum RF	510
AMCAD Engineering	1539
AMCOM Communications Inc.	1547
American Standard Circuits	948
Amphenol Printed Circuits	1004
Amplical	2027
AmpliTech Inc.	1743
Analog Devices Inc.	1239
AnaPico AG	1250
Anoison Electronics LLC	1621
Anritsu	1039
Ansys	621
Antennex BV	329
Antenom Antenna Technologies	1262
AnTrust	2343
AR RF/Microwave Instrumentation	1045
Artech House	807
ASB Inc.	2314
ASI CoaxDepot	1625
Association of Old Crows	547
Astronics Test Systems	2155
Atek Midas	1260
Avalon Test Equipment	1748
B&Z Technologies LLC	512
B5G TFAM	244
Beijing Hwa-Tech Information System Co. Ltd	530
Berkeley Nucleonics Corp.	1250
Bird Technologies	1955
BoldRF LLC	2343
Boonton Electronics	704
BroadWave Technologies Inc	330
Cadence Design Systems Inc.	1321

CaiQin Technology Co. Ltd.	711
CE Precision Assemblies	1205
Celanese Micromax	2253
Celsia Inc.	260
Century Seals Inc.	213
Cernex / Cernexwave	605
Chengdu Filter Technology Co. Ltd.	1906
Chengdu Haide Tuohai Communication	
Tech Co. Ltd.	1957
Chengdu HuaMing Microwave	
Technology Co. Ltd.	253
Chengdu Jingxin Microwave Technology Co. Ltd.	2228
Chengdu Leader Microwave Technology Co. Ltd.	229
Chengdu Lingyi Communication	
Technology Co. Ltd.	2012
Chengdu Precision Rong Creation	
Technology Co. Ltd	1851
Chengdu Qihang System Integration Co. Ltd.	1849
Chengdu Wattsine Electronic	
Technology Co. Ltd.	2013
Cheshir Industries Inc.	2343
Ciao Wireless Inc.	1005
Cinch Connectivity Solutions	1831
CML Microcircuits UK Ltd.	551
Coilcraft	1930
Communication Power Corporation (CPC)	1855
Comotech Corp.	454
Component Distributors Inc.	631
COMSOL Inc.	446
ConductRF / EAM	2414
Connectronics Inc.	1304
Continental Resources	1309
Copper Mountain Technologies	1111
Corning® Gilbert®	1213
Cosmic Microwave Technology Inc.	1908
COTS RF	2343
CPI Electron Device Business	1512
CPS Technologies Corp.	2324
Crane Aerospace & Electronics	2231
Criteria Labs Inc	215
Crystek Crystals Corp.	1926
CTT Inc., a KRATOS Company	1731
Custom Cable Assemblies Inc.	332
Custom Microwave Components Inc.	453
CX Thin Films	2408
Dalian Dalicap Tech Corporation	2229
DAPU Technologies	952
Dassault Systemes Americas Corp.	2121
dB Control	2112
Delta Circuits	651
Delta Electronics Mfg. Corp	726
Denka Corporation	854
DeWeyl Tool Company	908
Diamond Antenna & Microwave	504
Dino-Lite Scopes	1904
Diramics	748
DiTom Microwave Inc	1625
Dongshin Microwaye Absorbers Co. Ltd	255
Dotwil Radio Frequency (Aphui)	500
Technology Co. Ltd	2152
Doty Scientific Inc	2306
Fast Photonics	2415
Edite 11SA	2415
LEING OOM	24J

ED2 Corporation	752
Electro Ceramic Industries	1549
Electro Rent	1425
Element Six	1156
Elite RF	1848
Eltek USA	1963
EMA Design Automation Inc.	346
Embry-Riddle Aeronautical University	249
EMC Elektronik Ltd.	1946
Empower RF Systems Inc.	1730
EMWorks	2004
ENGIN-IC Inc.	1651
EPIO Solutions	1060
Fravant	1939
Frzia	428
FTL Systems Ltd	2142
Etrontimes Technology Pte Ltd	1911
Ettoriumes reenhology rice Etd.	1311
European Mierowaya Acceptation	910
European Microwave Association	800
	009
Everypeing international Corp.	2129
everything RF	1726
evissaP Inc.	1/20
eV-Technologies	1407
Exodus Advanced Communications	2411
Extreme Waves Inc.	1912
Exxelia	2108
EZ Form Cable	1205
F&K Delvotec Inc.	432
Falcomm Inc.	2343
Faraday Defense Corp.	331
Earran Technology I to	2144
Tanan leonnoiogy Ltu.	Z144
FenComp Oy	2144
FenComp Oy FILPAL (M) SDN BHD	2255 2225
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc.	2144 2255 2225 233
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic	2144 2255 2225 233 626
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited	2144 2255 2225 233 626 750
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc.	2144 2255 2225 233 626 750 1760
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd.	2144 2255 2225 233 626 750 1760 1152
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc.	2144 2255 2225 233 626 750 1760 1152 2015
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fuijan Micable Electronic	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian Micable Electronic Technology Group Co. Ltd	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. Focus Microwaves Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Corporation	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials General Microwave Corporation GeoStore Microwave Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. GCB Industries Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. GGB Industries Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. GGB Industries Inc. Glenair Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. GGB Industries Inc. Glenair Inc. Global Communication Semiconductors	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Glenair Inc. Global Communication Semiconductors Global Foundries	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Glenair Inc. Global Communication Semiconductors Global Foundries Golden Loch Ind. Co. Ltd.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. GGB Industries Inc. Global Communication Semiconductors GlobalFoundries Golden Loch Ind. Co. Ltd. G-Way Solutions LLC	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552 2054
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Global Communication Semiconductors Global Communication Semiconductors Global Foundries Golden Loch Ind. Co. Ltd. G-Way Solutions LLC Harbour Industries	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552 2054 2054
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Global Communication Semiconductors Global Foundries Golden Loch Ind. Co. Ltd. G-Way Solutions LLC Harbour Industries Hasco Components	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552 2054 2054 2054
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Global Communication Semiconductors GlobalFoundries Golden Loch Ind. Co. Ltd. G-Way Solutions LLC Harbour Industries Hasco Components HeFei HTMicrowave Technology Co. Ltd.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552 2054 2054 2026 1612 2249
FenComp Oy FILPAL (M) SDN BHD Filtronetics Inc. Filtronic Fine-Line Circuits Limited Finwave Semiconductor Inc. Flann Microwave Ltd. Flexco Microwave Inc. Focus Microwaves Inc. FormFactor Inc. Fortify Fraunhofer IIS Frontlynk Technologies Inc. Fujian MIcable Electronic Technology Group Co. Ltd Fujikura Ltd. GBC Advanced Materials Gel-Pak General Microwave Inc. Global Communication Semiconductors GlobalFoundries Golden Loch Ind. Co. Ltd. G-Way Solutions LLC Harbour Industries Hasco Components HeFei HTMicrowave Technology Co. Ltd. Herotek Inc.	2144 2255 2225 233 626 750 1760 1152 2015 439 825 349 2330 413 655 2060 2315 1606 1731 2006 642 2307 1647 2239 552 2054 2054 2026 1612 2249 507

IMS2024

IMS2024 EXHIBITOR LIST AS OF 14 MAY 2024 | For the most up-to-date information, please visit: ims-ieee.org

Hirose Electric Americas	2406
HJ Technologies	2227
Holzworth	704
HRL Laboratories LLC	426
Hughes Circuits Inc.	753
Hyperlabs Inc.	1749
iCana Ltd.	1650
IEEE Antennas and Propogation Society	1605
IEEE Electromagnetic Compatibility Society	1605
IEEE Geoscience and Remote Sensing Society	1605
IEEE LEO SatS	1605
IEEE Microwave Theory and Technology Society	1605
IHP GmbH	828
Impulse Technologies Inc.	1144
IM Technology Co. I td.	1954
IMST GmbH	1827
InCirT	2343
	2250
InCompliance Magazine	2200
Indium Corp	21/
Infilian Corp.	214
Initial Microsystem recimology co. Ltd.	2209
	000
Innertron Inc.	2332
Innovative Power Products	749
Innovative Thermal Solutions	2309
In-Phase Technologies Inc.	1108
INRCORE LLC	2031
Inspower Co. Ltd.	1510
Insulated Wire Inc.	1312
Integra Technologies Inc.	1829
Intelliconnect	1205
International Manufacturing Services Inc.	1945
inTEST Thermal	405
IROM Tech Inc.	2008
Ironwave Technologies	1104
Ironwood Electronics	1724
ISI + BittWare	348
Isola	1821
iTest	1539
ITF Co. Ltd.	314
IVWorks Co. Ltd.	2061
Jariet Technologies Inc.	2326
JFW Industries Inc.	804
liangsu Trigiant Technology Co. Ltd	352
Johanson Technology	2221
	5/13
JunCoay PETochnologies	207
	010
	040
Keycom Corp.	457
Keysight	121
Kiviic lechnology	1513
Knowles Precision Devices	843
KOSTECSYS CO. LID.	1948
K-PA Inc.	2343
Kratos Microwave Electronics Division	1731
KRYTAR	1412
KVG Quartz Crystal Technology GmbH	333
Kyocera AVX	420
Kyocera International Inc.	321
LadyBug Technologies LLC	2014
Lake Shore Cryotronics Inc.	353
Lanjian Electronics	2053

Laser Processing Technology Inc.	1011
Leader Tech Inc.	305
Leonardo	2160
Liberty Test Equipment Inc.	1625
Lintrinsic Devices	2343
LISAT	307
Logus Microwave	911
Lorentz Solution Inc.	2350
Lotus Communication Systems Inc.	206
Low Noise Factory	1654
IPKELaser & Electronics	1112
M2 Global Technology Ltd	1549
	921 744
Magvention	1555
Malico Inc	204
Marki Microwaye Inc	1204
Marvin Test Solutions	720
Massachusette Bay Technologies	200
MathWorks	209
	2139
	104
Maxenui Cieciniologies	1227
Maybell Quantum Industries	961
MCV MICrowave East Inc.	342
MECA Electronics Inc.	1413
Mega Circuit Inc.	849
MegaPhase	1905
Menlo Microsystems Inc.	306
Mercury Systems	1332
Metallix Refining	2113
Mician GmbH	1415
Micro Harmonics Corp.	238
Micro Lambda Wireless Inc.	1513
Micro-Mode Products	414
Microsanj LLC	1407
Microsembly	1761
Micross Components	645
Microwave Applications Group	1305
Microwave Communications Labs Inc.	1212
Microwave Development Labs	1921
Microwave Engineering Corp.	757
Microwave Factory Co. Ltd.	1161
Microwave Journal	811
Microwave Product Digest	450
Microwave Techniques LLC	1160
Microwavefilters & TVC S.r.l.	2127
Microwaves & RF	1231
Millennium Circuits Limited (MCL)	1557
Millibeam Pty Ltd	1961
MilliBox	705
Millimeter Wave Products	951
Mini-Circuits	1639
Mini-Systems Inc.	909
MISOTECH	2151
Mitsubishi Electric US Inc.	1143
mmTron Inc.	1661
Mobiyu Corp.	653
Modelithics Inc.	1229
Modular Components National	846
Molex	540
Morion USUC	1010
Mosaic Microsystems	1012
Mousar Flactronice	320 2015
	2040

MPG-Microwave Products Group	1331
MPI Corporation	1524
MRSI Systems, Mycronic Group	1649
MtronPTI	910
Naprotek/SemiGen	2105
Narda-MITEQ	1931
NASA Goddard Space Flight Center	251
National Radio Astronomy Observatory CDL	256
Netcom Inc.	1657
Networks International Corp.	433
NextGen Components Inc.	2407
NI (now part of Emerson)	1839
Nisshinho Micro Devices Inc	1907
Niterra North America Inc	350
Noble Metal Services	1013
Noisewaye Corporation	2027
Norden Millimeter Inc	1022
Northron Crumman Corn	1923
NDI Services Inc.	2015
	2201
	2343
Nuvotronics	427
Nxbeam Inc.	408
Oak-Mitsui Technologies LLC	1925
Okmetic	347
Ophir RF Inc.	526
Optical Zonu Corp.	2162
Optiprint AG	761
Optisys Inc.	328
Palomar Technologies	2111
Paricon Technologies Corp.	1163
Partow Technologies LLC	212
Pasquali Microwave Systems Srl	1915
Passive Plus	2031
PCB Technologies USA	2226
Pendulum Instruments	2124
Perisens GmbH	1163
Phase Sensitive Innovations	225
Pickering Interfaces	404
PicoTechnology	1608
Piconics Inc.	747
Pivotone Communication Tech. Inc.	312
PM Industries Inc.	1506
Polyfet RF Devices	1815
Powercast Corporation	345
PPG Cuming Microwave	1746
Precision Circuit Technology	2208
Presidio Components	/07
PRELItd	808
nSemi Corporation	1351
	22/2
	1646
	11040
	1120
	1805
QRT Inc.	2126
QSI Co. Ltd.	460
Q-lech Corp.	2223
Qualwave Inc.	448
Quantic Corry	1251
Quantic Electronics	1251
Quantic Eulex	1251
Quantic Microwave Dynamics	1251
Quantic Ohmega Ticer	1251

IMS2024

IMS2024 EXHIBITOR LIST AS OF 14 MAY 2024 | For the most up-to-date information, please visit: ims-ieee.org

Quantia DMI (Dianar Manalithiaa)	1051
	1251
Quantic TRM	1251
Quantic Wenzel	1251
Quantic X-Microwave	1251
QuantumZ Inc. Flexium Interconnect	1206
QuinStarTechnology Inc	1311
	2/12
	2412
QWED Sp. z.o.o.	2245
R&K Company Limited	2232
Ranatec AB	661
Rapidtek Technologies Inc.	2304
Reactel Inc	81/
DelComm Technologica Inc	1010
	1010
Reidan	1928
Remcom Inc.	945
Remtec Inc.	2215
Renaissance Electronics	1807
Resin Systems Corp	1857
	700
Response Microwave Inc.	109
RF Globalnet	1248
RF Materials Co. Ltd.	611
RF Morecom	2214
RE SPIN s.r.o.	1149
RE Systems Co. Ltd	609
DELIC Corp	610
RFHIC COIP.	610
RF-Lambda USA LLC	1725
RFMW	1029
RFOptic Inc.	1306
RFPT Co. Ltd.	231
Richardson Electronics Ltd	1308
Pichardson PEDD	020
	939
Rigoi lechnologies USA	2311
River Microwave	461
RLC Electronics	1013
Rogers Corp.	739
Rohde & Schwarz USA Inc.	1521
Rosenberger North America	1044
	1162
	1163
RWTH Aachen University	246
SADEVTEQ LLC	309
Saetta Labs	344
SAE North America	624
Safran Electronics & Defense	20/6
Santan Liectionics & Delense	1521
Samlec	1051
Sandvik Osprey Ltd.	431
Sangshin Elecom Co. Ltd.	960
San-tron Inc.	914
Sawnics Inc.	2115
Schmid & Partner Engineering AG	2020
Schott AC	2020
Scholl AG	760
Scientific Microwave Corp.	532
Sector Microwave	2009
SemiDice	645
Sensorview Co. 1 td.	1451
Shanghai XinXun Microwaya	1.01
	1014
iechnology Co. Ltd.	1811
Shengyi Technology Co. Ltd.	2310
Shenzhen Superlink Technology Co. Ltd.	1053
Siglent Technologies NA	1509
Signal Hound	1209
Signal Integrity Journal	Q11
	011
Circa al Miananna -	7 / 6 /

Signalcore Inc.	1847
Smiths Interconnect	613
Soitec	2024
SOMACIS	1057
Somefly Technologies Co. Ltd.	860
Sonnet Software Inc.	606
Southern Microwave Inc.	2007
Southwest Microwave Inc.	639
Space Machine & Engineering	713
Spectrum Control Inc.	208
Spinner GmbH	1561
Spira EMI Gaskets	2150
SRTechnology Corp.	511
SSI Cable Corporation	1612
State of the Art Inc.	411
Statek Corp.	513
Stellant Systems	339
Stellar Industries Corp.	525
STMicroelectronics Inc.	1361
STI-CO Antenna Solutions	1855
StratEdge Corporation	515
Sumitomo Electric Device Innovations	629
Sung Won Forming	509
Superapex LLC	1507
Susumu International (USA) Inc.	508
Suzhou Eoulu System Integration Co. Ltd.	950
SV Microwave	905
Swissto12 SA	856
Switzer	1845
Sylatech Limited	1660
SynMatrix Technologies Inc.	1532
Synopsys Inc.	2354
Syscom Advanced Materials	852
Tabor Electronics	1850
Tactron Elektronik GmbH & Co. KG	2014
Tagore Technology Inc.	1410
Taitien USA	412
Talent Microwave Inc.	456
Talent Microwave Inc. TANAKA Kikinzoku Intl	456
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation	456 1860 2204
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas	456 1860 2204 1604
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc.	456 1860 2204 1604 2131
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix	456 1860 2204 1604 2131 2205
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne	456 1860 2204 1604 2131 2205 1021
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc.	456 1860 2204 1604 2131 2205 1021 1505
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc.	456 1860 2204 1604 2131 2205 1021 1505 1460
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom	456 1860 2204 1604 2131 2205 1021 1505 1460 2252
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems TKD Science & Technology Co. Ltd.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004 2247
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems TKD Science & Technology Co. Ltd. TMY Technology Inc.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004 2247 1949
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems TKD Science & Technology Co. Ltd. TMY Technology Inc. TopLine Corp.	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004 2247 1949 1860
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Telonic Berkeley Inc. TeraProbes Inc. TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems TKD Science & Technology Co. Ltd. TMY Technology Inc. TopLine Corp. Toptek PCB	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004 2247 1949 1860 310
Talent Microwave Inc. TANAKA Kikinzoku Intl TDK Corporation TDK-Lambda Americas Tecdia Inc. Tektronix Teledyne Telegartner Inc. Telonic Berkeley Inc. Tensorcom TeraProbes Inc. Teruilai Texas Instruments The Boeing Company The Goodsystem Corp. Thinfilms Inc. Thintronics Inc. TICRA Times Microwave Systems TKD Science & Technology Co. Ltd. TMY Technology Inc. TopLine Corp. Toptek PCB Tower Semiconductor	456 1860 2204 1604 2131 2205 1021 1505 1460 2252 2423 2230 445 2051 2050 2206 2343 2110 1004 2247 1949 1860 310 830

TransEON Inc.	2343
Transline Technology Inc.	733
TransSiP Inc.	242
Trans-Tech	1560
Trexon	1205
Tronser Inc.	2056
TRS-RenTelco	410
TST (Tai-Saw Technology)	1208
UEC United Electronics Company	240
UIY Inc.	2153
Ulbrich Specialty Wire Products	2320
United Monolithic Semiconductors	1429
Uni-Trend US	2308
Universal Microwave Technology Inc.	452
University of Pennsylvania	250
University of Texas at Dallas	248
Vanteon Corporation	1553
Varioprint AG	451
Vaunix Technology Corp.	1109
Ventec International Group	2211
Verifide Technologies Inc.	1655
Vesperix Corp.	2421
Viper RF	455
Virginia Diodes Inc.	831
Vishav Centerline	207
Vishay Intertechnology Inc	1443
Vomac Technology	2011
WAFIOS Machinery Corp.	754
Waka Manufacturing Co. Ltd.	2044
Wakefield Thermal	220
Washington Laboratories	254
Wavepia Co. Ltd.	851
	001
WavePro	2405
WavePro Wavetek Microelectronics Corporation	2405
WavePro Wavetek Microelectronics Corporation Wavice Inc.	2405 2210 2145
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A.	2405 2210 2145 1061
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates	2405 2210 2145 1061 812
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave	2405 2210 2145 1061 812 1625
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc.	2405 2210 2145 1061 812 1625 627
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc.	2405 2210 2145 1061 812 1625 627 1430
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd	2405 2210 2145 1061 812 1625 627 1430 1927
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wilev	2405 2210 2145 1061 812 1625 627 1430 1927 2425
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 252 531 1947
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Tool	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Tool	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University Wilkes University Wilkes University Wilkes University Win Source Electronics Winchester Interconnect Winchester Tool WilpL-D	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WI Gore & Associates	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 252 531 1947 913 2025 1326 550 730
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University Wilkes University Wilkes University Wilkes University Wilkes University Win Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes Universit	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University Wilkes University Wilkes University Win Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WiPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd.	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XITAG	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XITAG XMA Corporation Xtalta Technologies Co. Ltd.	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427 1404 861
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WiN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XITAG XMA Corporation Xtaltq Technologies Co. Ltd.	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427 1404 861
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WiN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XITAG XMA Corporation Xtaltq Technologies Co. Ltd. Y.TECH VieldHU IB	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427 1404 861 1508
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XJTAG XMA Corporation Xtaltq Technologies Co. Ltd. Y.TECH yieldHUB	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427 1404 861 1508 360 2106
WavePro Wavetek Microelectronics Corporation Wavice Inc. Weasic Microelectronics S.A. Weinschel Associates Werbel Microwave Werlatone Inc. West Bond Inc. West Bond Inc. Wevercomm Co. Ltd. Wiley Wilkes University WIN Semiconductors Corp. Win Source Electronics Winchester Interconnect Winchester Interconnect Winchester Interconnect Winchester Tool WIPL-D Withwave Co. Ltd. WL Gore & Associates Xi'an HengDa Microwave Technology Development Co. Xian PrecisionRF Electronics Xi'an Tianze Xunda Technology Co. Ltd. XITAG XMA Corporation Xtaltq Technologies Co. Ltd. Y.TECH yieldHUB Yuetsu Seiki Co. Ltd.	2405 2210 2145 1061 812 1625 627 1430 1927 2425 252 531 1947 913 2025 1326 550 730 2322 1652 2010 2427 1404 861 1508 360 2106

SEE YOU IN SAN FRANCISCO! 2025 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM SAVE THE DATE

15–20 JUNE 2025 MOSCONE CENTER | SAN FRANCISCO, CA

IMS2025 (www.ims-ieee.org) is the centerpiece of Microwave Week 2025, which includes the RFIC Symposium (www.rfic-ieee.org) and the ARFTG Microwave Measurement Conference (www.arftg.org).

Microwave Week is the world's largest gathering and industry exhibition for MHz through THz professionals. IMS2025 will feature a far-reaching Technical Program focused on innovative and disruptive technology, applications, and entrepreneurship. Microwave Week provides a wide variety of technical and social activities for attendees and exhibitors. In addition to the diverse choices in technical sessions, attendees can explore interactive forums, plenary and panel sessions, workshops and technical lectures, application seminars, and also participate in paper contests for Students, Industry, and Young Professionals.

Welcome to IMS2025, where research and innovation create new opportunities in iconic San Francisco, California. The symposium will be held in the newly renovated Moscone Convention Center that is nestled in the dynamic South of Market (SoMa)/Yerba Buena district and is surrounded by cultural landmarks such as the San Francisco Museum of Modern Art (SFMOMA) and the picturesque Yerba Buena Gardens. During your stay, explore some of San Francisco's renowned attractions, including the Golden Gate Bridge and Fisherman's Wharf. Other notable tourist spots in San Francisco include Pier 39, Golden Gate Park, the California Academy of Sciences, the de Young Museum, the Asian Arts Museum, and the Exploratorium.

The San Francisco Bay Area is the largest hub for RF/microwave and semiconductor companies, hosting a significant population of high-frequency/high-speed engineers and entrepreneurs. Silicon Valley, a global icon of technology, is nestled within this region and is synonymous with cutting-edge technology and innovation with tech giants like Hewlett-Packard, Intel, Apple, Google, Meta, and Nvidia. The valley's unique ecosystem, fueled by a tradition of entrepreneurship and culture that embraces risk and failure, is a model for innovation hubs worldwide. Silicon Valley continues to attract top talent and venture capital, driving progress through the Wireless Golden Gateway. We look forward to welcoming you to San Francisco for IMS2025!

For more information: ims-ieee.org

WHAT WILL DEFINE THE FUTURE OF AEROSPACE AND DEFENSE?

Electrification. Advanced, secure networking. Next generation materials. Hypersonic flight. Artificial intelligence and machine learning. High-energy lasers. Autonomous, smart sensors. Sixth generation engine technologies. These are just some of the ways we're transforming how we connect and protect our world. Finding answers to the biggest questions is what defines us.

Learn more at rtx.com

COLLINS AEROSPACE | PRATT & WHITNEY | RAYTHEON

RF EXCELLENCE. MISSION-CRITICAL SUCCESS.

Innovative Solutions - DC-40GHz

Quick Prototype Delivery (3-4 wks)

913.685.3400 15237 Broadmoor Overland Park, KS e-mail: sales@nickc.com