Active Devices

Image

-

José Luis Gonzalez-Jimenez
CEA-LETI
Hong-Yeh Chang
National Central Univ.
Location
146B
Abstract

This session presents low-phase-noise signal generation from 2GHz to 30GHz using a variety of technologies including CMOS, SiGe, and GaN. Several advanced techniques including subharmonic injection, folded resonator, SIW resonator, dual-core/quad-mode, and post-fabrication selection will be discussed.

Abstract
Tu1D-1: A Ka-Band 256-QAM Ninefold Sub-Harmonically Injection-Locked CMOS I/Q Modulator Using Pulsed Oscillator
(08:00 - 08:20)
Abstract
Tu1D-2: A Ka-Band High Power and Low Phase Noise GaN MMIC Oscillator with a Compact Open-Loop Folded Resonator Filter
(08:20 - 08:40)
Abstract
Tu1D-3: An Ultra-Low Phase Noise Substrate-Integrated-Waveguide Oscillator
(08:40 - 09:00)
Abstract
Tu1D-4: 19-GHz VCO with Phase Noise of -117dBc/Hz at 1-MHz Offset Using an Array of Near Minimum Size Transistors and Intelligent Post Fabrication Selection
(09:00 - 09:20)
Abstract
Tu1D-5: A 2.9-to-7.2GHz Dual-Core Quad-Mode VCO Achieving 206.5dBc/Hz FoMT in 55nm CMOS
(09:20 - 09:40)

-

Stephen Maas
Nonlinear Technologies
Chinchun Meng
NYCU
Location
146B
Abstract

This session presents advanced frequency conversion circuits using silicon-based and III-V semiconductor technologies. The wide range of topics including frequency multiplication, frequency mixing, and frequency division will be discussed.

Abstract
Tu2D-1: A W-Band Stacked Frequency Quadrupler With A Dual Driven Core Achieving 10.3% Drain Efficiency
(10:10 - 10:30)
Abstract
Tu2D-2: A F-Band ×4 Frequency Multiplier Chip with High Spectral Purity Using Vertically Stacked Marchand Baluns and TF-MSL
(10:30 - 10:50)
Abstract
Tu2D-3: A 43–84GHz, Wideband Frequency Doubler With a Symmetric, AC-Terminated Transformer Balun
(10:50 - 11:00)
Abstract
Tu2D-4: Strong Fundamental Rejection in Frequency Doublers at 220–260GHz Using a 250-nm InP HBT Process
(11:00 - 11:10)
Abstract
Tu2D-5: A Wideband Bi-directional Active Mixer for 5G Millimeter-Wave Applications
(11:10 - 11:30)
Abstract
Tu2D-6: A Low Power 185 GHz Static CML Frequency Divider in SiGe HBTs Using Band-switching Technique in 45nm PDSOI BiCMOS
(11:30 - 11:50)

-

Jesse Moody
Sandia National Laboratories
Luciano Boglione
U.S. Naval Research Laboratory
Location
146C
Abstract

Microwave radiometry and low-noise amplifiers from microwave to mm-waves. Broad range of state-of-the-art LNAs including IR-UWB applications to W-band GaN high linearity uses.

Abstract
Tu4E-1: KEYNOTE: Radiometry and the Ever Shrinking Spectra and Ever Expanding Needs
(15:40 - 16:00)
Abstract
Tu4E-2: A Power-Efficient, F-Band, 6.5-dB NF, Staggered-Tuned, Inverter-Based CMOS LNA for 6G Receivers
(16:00 - 16:20)
Abstract
Tu4E-3: W-Band Low-Noise-Amplifier MMICs in InGaAs HEMT Technologies on Gallium-Arsenide and Silicon Substrates
(16:20 - 16:40)
Abstract
Tu4E-4: A Ku-Band +2 dBm IIP3 Transformer-Based LNA with Loop-Gain-Enhanced Capacitive Negative Feedback
(16:40 - 17:00)
Abstract
Tu4E-5: A 6.8–9.4GHz LNA Achieving 36.5dB Peak Gain, Consuming 4.28mW with an Adjustable Threshold Limiter for IR-UWB Applications
(17:00 - 17:20)

-

Vittorio Camarchia
Politecnico di Torino
Varish Diddi
Qualcomm
Location
146A
Abstract

This session presents high-efficiency and -linearity power amplifiers modules/MMIC designed in GaN and GaAs compound semiconductors. The papers of the session focus on a wide range of applications moving from communications in NR FR1 up to Ka-band satellite. The topology selected is multistage Doherty architecture and differential topology to achieve high efficiency and linearity over wide bands.

Abstract
We1C-1: KEYNOTE: GaAs & GaN MMIC Power Amplifier and Front-End Module Design for K-Ka Band Commercial Communication Systems
(08:00 - 08:20)
Abstract
We1C-2: High-gain and high-linearity MMIC GaN Doherty Power Amplifier with 3-GHz bandwidth for Ka-band satellite communications
(08:20 - 08:40)
Abstract
We1C-3: A High Efficiency and High Linearity GaAs HBT Doherty Power Amplifier for 5G NR 3.4V Application
(08:40 - 09:00)
Abstract
We1C-4: A Highly Linear and Efficient Differential Power Amplifier with 35-dBm Saturated Output Power, 65% Peak PAE by Reducing Base Voltage Peaking in InGaP/GaAs HBT Process for Handset Applications
(09:00 - 09:20)
Abstract
We1C-5: Integrated 5-W GaN Doherty Power Amplifier for 5G FR1 Bands with 19dB Gain Over a 41% Bandwidth
(09:20 - 09:40)
Damla Dimlioglu
Cornell Univ.
Mohammad Ghadiri-Sadrabadi
Kyocera
Location
151AB
Abstract

State-of-the-art Ku-band to E-band mm-wave VGAs and phase shifters in CMOS technology. Design methods include novel approaches in optimization and circuit techniques.

Abstract
We1H-1: A 22-to-37.8 GHz Low-Gain-Phase-Error Variable-Gain Amplifier With Impedance-Compensation Technique in 65-nm CMOS Process
(08:00 - 08:20)
Abstract
We1H-2: Design of Ku-Band Bi-Directional Active Phase Shifter Enabling a Low RMS Error Utilizing Switch-Less Staggered Core with the Identical In-Out Matching
(08:20 - 08:40)
Abstract
We1H-3: A 57–71-GHz Accurate dB-Linear Variable Gain Power Amplifier with Ultralow Gain Error Using Particle Swarm Optimization Algorithm
(08:40 - 09:00)
Abstract
We1H-4: A 29–48GHz Variable Gain Low Noise Amplifier Using Active Load in 90-nm CMOS Process
(09:00 - 09:20)

-

Wing Shing Chan
CityU
Anna Piacibello
Politecnico di Torino
Location
146A
Abstract

This session includes novel techniques to improve the performance of different power amplifier topologies in the 1GHz – 15GHz frequency band. Techniques for both narrow band and broadband will be presented. It will also cover both single- and dual-input power amplifiers for transmitter architectures.

Abstract
We2C-1: A GaN-Based MMIC Doherty Power Amplifier With Class F Peaking Branch
(10:10 - 10:30)
Abstract
We2C-2: Compact Dual-Core Drive Stage using Three-winding Transformer for CMOS Broadband Power Amplifier
(10:30 - 10:50)
Abstract
We2C-3: A 1.2 to 5.7GHz Multi-Mode Dual-Input Power Amplifier Using a Novel Sigmoid-Function-Based Power Splitter
(10:50 - 11:10)
Abstract
We2C-4: High-Power BAW-Based FDD Front-End using Indirect-Duplexing Load Modulated Balanced Amplifier for Massive MIMO Array
(11:10 - 11:30)
José Carlos Pedro
Universidade de Aveiro
Paul J. Draxler
MaXentric Technologies
Location
151AB
Abstract

This session reports on recent advances in RF power amplifier linearity and efficiency enhancement techniques.

Abstract
We2H-1: KEYNOTE: Unlocking the Next Generation of Cellular Connectivity: Advances in RF PA and Transmitter Architectures
(10:10 - 10:30)
Abstract
We2H-2: A Baseband Impedance Cancellation Technique For WidebandMulti-Transistor Amplifiers
(10:30 - 10:50)
Abstract
We2H-3: A Robust Search Algorithm of Optimal Driving Signals for Dual-Input High Power Amplifiers
(10:50 - 11:10)
Abstract
We2H-4: A Tri-Branch Analog Pre-Distortion Linearizer for the Compensation of Gain Inflection in Doherty Power Amplifiers
(11:10 - 11:30)
Abstract
We2H-5: A Method for Designing a Linear, Efficient 2-Stage GaN PA for Supply Modulation
(11:30 - 11:50)

-

Yulong Zhao
Skyworks
Chenyu Liang
Qorvo
Location
146A
Abstract

This session presents >10W load-modulated power amplifiers focusing on broad bandwidth and wide output backoff power ranges. The session begins with a keynote presentation on stability analysis, critical for any high-power design. Examples of both hybrid and MMIC power amplifiers will be discussed.

Abstract
We3C-1: KEYNOTE: Stability Analysis Methods for Microwave Power Amplifiers: A Modern Perspective
(13:30 - 13:50)
Abstract
We3C-2: Design and Characterization of an MMIC Current Mode Outphasing Power Amplifier
(13:50 - 14:10)
Abstract
We3C-3: Decade-Bandwidth RF-Input Pseudo-Doherty Load Modulated Balanced Amplifier using Signal-Flow-Based Phase Alignment Design
(14:10 - 14:30)
Abstract
We3C-4: Mode Extension of Load-Modulated Balanced Amplifier with Enhanced Efficiency
(14:30 - 14:50)
Abstract
We3C-5: A 3.2–4.2GHz Wideband 47dBm GaN HEMT Sequential-LMBA with Harmonic Tuned Using CRLH Transmission Line Stub
(14:50 - 15:10)
Anding Zhu
Univ. College Dublin
Pere L. Gilabert
Univ. Politècnica de Catalunya
Location
151AB
Abstract

This session addresses digital signal processing algorithms for wireless transmitter linearization and power amplifier behavioral modeling.

Abstract
We3H-1: KEYNOTE: Role of AI/ML in PA Linearization for Next G Wireless
(13:30 - 13:50)
Abstract
We3H-2: Adaptive Kernel Function Sharing for Digital Predistortion of RF Power Amplifiers With Dynamic Resource Block Allocation
(13:50 - 14:10)
Abstract
We3H-3: A Low-Complexity DPD Coefficient Update Method for Varying Transmission Configurations
(14:10 - 14:30)
Abstract
We3H-4: Behavioral Modeling of Millimeter Wave GaN Power Amplifiers for 6G Integrated Sensing and Communications Application
(14:30 - 14:50)
Abstract
We3H-5: On the Parameter Identification of Cascaded Behavioral Models for Wideband Digital Predistortion Linearization
(14:50 - 15:10)

-

Michael Roberg
mmTron
Munkyo Seo
Sungkyunkwan Univ.
Location
146A
Abstract

This session focuses on mm-wave power amplifiers operating between Ka-band and E-band. The first paper describes a GaN V/E-band distributed PA with greater than 1W output power. The second paper discusses a V-band GaN PA with low-gain compression for use in communication systems. The third paper presents a Ka-band LNA and PA designed in silicon FinFET technology. The fourth paper describes a high linearity SiGe PA design using a novel balun and power combiner.

Abstract
Th1C-1: A 52-to-86GHz V-/E-band GaN Distributed combined Power Amplifier with Output Power Beyond 1W and 34GHz Bandwidth
(08:00 - 08:20)
Abstract
Th1C-2: V-Band GaN Power Amplifier MMICs with High Power-Bandwidth and Low Gain Compression for RF Inter-Satellite Links
(08:20 - 08:40)
Abstract
Th1C-3: Compact K/Ka-Band Frontend PA and LNA in 16nm FinFET for Next Generation Digitally Intensive Arrays
(08:40 - 09:00)
Abstract
Th1C-4: A 31–41GHz SiGe Power Amplifier with Sandwiched-Coupler-Balun and Folded-T-Line Power Combiner Achieving 23.5-dBm/22.2-dBm Psat/OP1dB and Supporting 64-QAM Modulation
(09:00 - 09:20)
Shahed Reza
Sandia National Laboratories
Ko-Tao Lee
Qorvo
Location
152AB
Abstract

This session features discussions of advances in process technology for III-V on Si HBTs, low-loss SOI substrate processing, and GaN-on-Silicon power devices.

Abstract
Th1I-1: KEYNOTE: Ultra-Wide Bandgap MMW/Sub-MMW Devices
(08:00 - 08:20)
Abstract
Th1I-2: An Adaptable In(Ga)P/Ga(Sb)As/Ga(In)As HBT Technology on 300mm Si for RF Applications
(08:20 - 08:40)
Abstract
Th1I-3: Local Interface RF Passivation Layer Based on Helium Ion-Implantation in High-Resistivity Silicon Substrates
(08:40 - 09:00)
Abstract
Th1I-4: Large-Signal Characterisation and Analysis of AlN/GaN MISHEMTs on Si with a PAE > 62% at 28GHz
(09:00 - 09:20)

-

Frederick H. Raab
Green Mountain Radio Research
Marc Franco
Macom
Location
145AB
Abstract

This session starts with a keynote presentation on an HF through UHF transceiver overview before moving to a presentation on a reconfigurable low-pass filter. The session continues with a high isolation CMOS switch, a GaN supply modulator and finishes with a keynote presentation on analog predistortion applied to the HF through UHF frequency range.

Abstract
Th2B-1: KEYNOTE: A Modern HF/VHF/UHF Transceiver for All Applications — What Would it Look Like Today?
(10:10 - 10:30)
Abstract
Th2B-2: A 0.1–3.2GHz Reconfigurable LPF With Peaking Reducing and Selectivity Enhancement Using Adaptive Impedance Transformation
(10:30 - 10:50)
Abstract
Th2B-3: High Isolation CMOS TDD RF Front-End Using Sandwich-Type Concentric Vortical Transformer and Leakage Elimination Technique
(10:50 - 11:10)
Abstract
Th2B-4: A Monolithic GaN based Supply Modulator with Dual-Antibootstrap Level Shifter for Envelope Tracking Application
(11:10 - 11:30)
Abstract
Th2B-5: KEYNOTE: Understanding Linearization and its Recent Developments
(11:30 - 11:50)
David Brown
BAE Systems
Sensen Li
Univ. of Texas at Austin
Location
146A
Abstract

This session focuses on III-V and silicon power amplifiers (PAs) targeting D-band applications and beyond. It will start with a benchmark design of high-efficiency PAs in 250nm and 130nm InP HBT technologies at 220GHz, followed by a low-noise PA for the WR4.3 and WR3.4 bands in a 35nm InGaAs mHEMT technology. The next presentation from the session will talk about another InGaAs mHEMT PA covering 270–320GHz in a compact footprint. Next, analysis and design of a differential complex neutralization will be discussed, based on which a PA at D-band is implemented for efficient and linear applications. The session will be concluded with a presentation on a 10–230GHz InP distributed amplifier using Darlington quadruple-stacked HBTs.

Abstract
Th2C-1: 220-GHz High-Efficiency Power Amplifiers in 250-nm and 130-nm InP HBT Technologies Having 14.4–25.0% PAE and 40–60mW Pout
(10:10 - 10:30)
Abstract
Th2C-2: Low-Noise Power-Amplifier MMICs for the WR4.3 and WR3.4 Bands in a 35-nm Gate-Length InGaAs mHEMT Technology
(10:30 - 10:50)
Abstract
Th2C-3: Highly-Compact 20-mW, 270–320-GHz InGaAs mHEMT Power Amplifier MMIC
(10:50 - 11:10)
Abstract
Th2C-4: Analysis and Design of Differential Complex Neutralization Power Amplifiers for Efficient-Yet-Linear High mm-Wave Applications
(11:10 - 11:30)
Abstract
Th2C-5: A 10-230-GHz InP Distributed Amplifier Using Darlington Quadruple-Stacked HBTs
(11:30 - 11:50)
Wolfram Stiebler
Raytheon
Peter Magnee
NXP Semiconductors
Location
152AB
Abstract

This session includes papers featuring heterogeneous integration of N-polar GaN HEMTs with Si interposers at Ka-band, high-power-density Ka-band GaN MIS-HEMTs, and thermal characterization and modeling of coupling effects in GaN-based MMICs.

Abstract
Th2I-1: KEYNOTE: Overview of RF Power Amplifier Technology for Wireless Infrastructure and Future Trends
(10:10 - 10:30)
Abstract
Th2I-2: A Heterogeneously-Integrated Ka-Band, N-Polar Gallium Nitride HEMT Amplifier
(10:30 - 10:50)
Abstract
Th2I-3: Ka Band GaN MIS-HEMT with ALD-SiN Gate Dielectric and Lp-SiN Passivation Layer
(10:50 - 11:10)
Abstract
Th2I-4: Characterization and Modeling of Dynamic Thermal Coupling in GaN MMIC Power Amplifiers
(11:10 - 11:30)