Emerging Technical Areas
-
This session looks at AI techniques for everything from synthesizers to channel estimators and MIMO systems.
-
This session looks at AI/ML for transmitter blocks and elements including power amplifiers and pre-distorters.
-
This session features a selection of papers that delve into advanced packaging and circuit implementation techniques for sub-THz and THz systems. The session will provide an in-depth examination of THz transceivers, focusing on key building blocks such as transmitter and receiver front-ends, power detectors, phased arrays, and phase shifters, as well as micro-machined and photoconductive switches.
-
This session focuses on Qubit readout low-noise cryogenic amplifiers and receivers manufactured in CMOS and SiGe BiCMOS technologies. The first paper discusses a novel GM boosted LNA topology. This is followed by a paper on the characterization of several CMOS inverter-based 28nm FDSOI LNAs. Next, 45nm BiCOMOS SiGe LNAs with record 2.6K minimum noise temperature are presented. The session ends with a SiGe BiCMOS IQ receiver for superconducting Qubit readout.
Advances in material sensing and characterization techniques from S to W frequency bands are presented. Instruments based on resonators, planar transmission lines, and free-space radar are discussed.
-
The session introduces recent advances in quantum technologies. The first paper presents a planar graphene/ferroelectric FET for generating a pyroelectric current from microwave power. The second shows a driver module for the control of a single transmon Qubit in the 4–10GHz frequency range. The third paper deals with a four-winding transformer-based capacitor-assisted QVCO, operating in 55nm CMOS process, to reduce the flicker noise. The final paper introduces a technique for implementing a frequency-doubler in NbTiN on silicon for operation in a cryogenic environment.