Field, Device and Circuit Tech.
-
Improved computational methods for the simulation of challenging electromagnetic structures are crucial for advances in key areas of microwave technology. This session presents several innovative computational methods to allow for improved modeling for various applications. Applications include accurate modeling of RF emission from printed circuit boards, a new fast method for analyzing problems with the volume integral equation, a fast method for analyzing arbitrary H-plane waveguide systems, and a new method for finding the mm-wave attenuation on printed circuit lines due to surface roughness.
-
This session introduces a variety of innovative modeling techniques that allow for the improved modeling of practical microwave structures as well as the modeling of new phenomena and effects, ranging from microwave to THz frequencies. This includes an improved analysis and optimization of magnet-less circulators, the efficient analysis of practical CuMax routing lines on a printed circuit board, analysis of plasma jet lines, using a physical based model for analyzing signal integrity on high-speed data links, and the modeling THz radiation produced by an electron beam in the vicinity of a grounded strip grating.
-
This session highlights innovative approaches in computational methods and optimization for circuit design. Topics include advanced CAD techniques for sensitivity analysis, efficient surrogate modeling for inverse design, cognitive methods for design optimization, knowledge-based modeling and novel methods for optimizing oscillator systems. These contributions demonstrate improvements to accuracy, efficiency, and design flexibility in RF and microwave circuits.