Systems & Applications
-
This session highlights innovations and techniques in integrated millimeter-wave and Sub-Terahertz hardware for advanced radar and sensing applications.
This session covers advances in microwave technologies related to quantum computing. The session begins with two papers relevant to quantum computing readout. First a cryo-CMOS single-sideband upconverter is presented for qubit readout waveform generation and then the systematic design of parametric amplifiers using electromagnetic- and schematic-level simulations is described. Next, a wideband cryogenic VCO for use in qubit control/measurement systems is presented. This is followed by a description of research in cryogenic RF-over-fiber links. Finally, the session concludes with the presentation of an high-coherence architecture for packaging superconducting quantum processors
-
This session presents recent developments in millimeter-wave wireless systems for sensing and communications. Advanced techniques for MIMO radar, three-dimensional radar imaging, radar networks, and joint sensing and communications are presented through six detailed presentations.
-
This session explores new approaches for sub-THz and THz signal generation, spanning diverse technologies and architectures. The first paper presents a 4-240 GHz InP variable-gain amplifier employing an analog-controlled input attenuation network for versatile performance tuning. Next, a 4-420 GHz distributed amplifier MMIC in 20-nm InGaAs-on-Si HEMT technology achieves 11±2 dB of gain. A 280 GHz sub-harmonic injection-locked oscillator in 45 nm CMOS PD SOI demonstrates robust frequency generation. Finally, a 300 GHz-band single-balanced resistive mixer module in 60-nm InP HEMT features LO leakage suppression. Collectively, these designs pave the way for next-generation THz communication systems.
This session contains 5 papers on analog predistortion (APD) focusing on very high frequency, MIMO systems, and circuit techniques including phase-cancellation, Doherty and Darlington power amplifier architectures.
-
This session brings together four papers showcasing sub-terahertz (THz) and THz signal modulation techniques for next-generation communication systems. The first paper introduces attenuator-based vector modulation strategies for phased arrays operating from 200 to 480 GHz. The second paper demonstrates a novel photoconductive solid-state plasma evanescent-mode waveguide for sub-THz phase shifting. The third paper presents a compact 8.2 mW complementary current-reusing D-band frequency quadrupler implemented in 22 nm FDSOI CMOS. Finally, the fourth paper compares wideband low-power H-band frequency doublers, with and without driving stages, also in 22 nm FDSOI CMOS, highlighting performance trade-offs. These advances significantly elevate future sub-THz communications.
This session showcases cutting-edge innovations in satellite communication and remote sensing technologies, highlighting advancements in antennas, phased arrays, and transceivers.
-
Improved computational methods for the simulation of challenging electromagnetic structures are crucial for advances in key areas of microwave technology. This session presents several innovative computational methods to allow for improved modeling for various applications. Applications include accurate modeling of RF emission from printed circuit boards, a new fast method for analyzing problems with the volume integral equation, a fast method for analyzing arbitrary H-plane waveguide systems, and a new method for finding the mmW attenuation on printed circuit lines due to surface roughness.
-
This session introduces a variety of innovative modeling techniques that allow for the improved modeling of practical microwave structures as well as the modeling of new phenomena and effects, ranging from microwave to THz frequencies. This includes an improved analysis and optimization of magnet-less circulators, the efficient analysis of practical CuMax routing lines on a printed circuit board, analysis of plasma jet lines, using a physical based model for analyzing signal integrity on high-speed data links, and the modeling THz radiation produced by an electron beam in the vicinity of a grounded strip grating.
-
This session highlights innovative approaches in computational methods and optimization for circuit design. Topics include advanced CAD techniques for sensitivity analysis, efficient surrogate modeling for inverse design, cognitive methods for design optimization, knowledge-based modeling and novel methods for optimizing oscillator systems. These contributions demonstrate improvements to accuracy, efficiency, and design flexibility in RF and microwave circuits.
-
This session will showcase state of the art MMIC performance at frequency bands covering E-band (74, 84 GHz) through D-band (110-170 GHz). MMIC technologies ranging from state of the art 100 nm GaN-on-SiC, commercial GaAs PHEMT, and 40 nm bulk CMOS processes are presented. These results represent new benchmark performance results for these technologies and showcase high-performance on-chip power combining techniques and these amplifiers are applicable to a range of RF applications including E-band wireless backhaul, 6G communications, D-band radar and imaging, satellite communications, and defense electronics.
-
The session focusses an advanced compound semiconductor integrated-circuits for broadband and phased-array applications. The session will kick-off with an invited talk on the advances in mm-wave and THz-amplifier technology and design. Advanced PA, DPD, linearization, and power combining techniques will be described as well as a highly-integrated 300 GHz active phased-array.