Abstract
Although WinCal is well known and respected in the industry as a tool for performing RF calibrations, it has several other, perhaps underappreciated, features, which allow it to form a part of an analytics pipeline or as the basis for a low-cost and feature-rich test executive.
This workshop will demonstrate some of these lesser-known analysis features, and additionally how WinCal can be integrated with popular open-source software packages to significantly extend its functionality whilst leveraging its robust and powerful algorithms. The 5.1 release of WinCal introduces a number of new APIs to facilitate this, which will be discussed in detail.
Abstract
This workshop focuses on the critical aspect of phased array calibration, addressing complexities in ensuring precise beamforming and steering. As phased arrays become ubiquitous in applications like SATCOM, innovative design techniques are emerging to simplify calibration. We will explore innovative calibration methods, novel design approaches minimizing calibration efforts, and pioneering "calibration-less" architectures. Leading expert(s) will share insights, challenges, and solutions, enhancing attendees' capabilities in designing, implementing, and maintaining high-performance phased array systems with reduced calibration burdens.
Abstract
This session introduces numerous advanced mm-wave in-package radiating and waveguiding structures at frequencies up to G-band.
Abstract
This session will present the latest advances in switching technologies for innovative RF and mm-wave circuits. The session will highlight ultra low-loss MEMS switches for high-speed communication systems, wideband CMOS integrated PCM devices. The session will cover BST and PCM based variable capacitors, with super high dynamic range and high-Q. New sub-THz waveguide integrated switches with optical control will also be presented, along with piezoelectric material based modulators.
Abstract
Radio and mm-wave integration and packaging is emerging as an enabling technology for commercial and defense applications. In this session, we highlight different transmission-line based components and system including SIW technologies for compact phase shifters, couplers, and integration of active and passive elements. Integrated wideband waveguide crossovers for high power routing is presented. Miniaturized wafer-scale hybrid couplers are implemented in two different technologies.
Abstract
Microwave plasma and its applications for protection against high power threads are discussed. New techniques and instruments for material sensing across a broad range from microwave to THz frequencies are presented. The session covers the EM characterization of atmospheric conditions, fluids, as well as conventional and 3D-printed substrates.
Abstract
This session will showcase state-of-the-art MMIC performance at frequency bands covering E-band (74, 84GHz) through D-band (110–170GHz). MMIC technologies ranging from state-of-the-art 100nm GaN-on-SiC, commercial GaAs PHEMT, and 40nm bulk CMOS processes are presented. These results represent new benchmark performance results for these technologies and showcase high-performance on-chip power combining techniques and these amplifiers are applicable to a range of RF applications including E-band wireless backhaul, 6G communications, D-band radar and imaging, satellite communications, and defense electronics.
Abstract
The session covers multi-Gbps transmitter and receiver building blocks and systems for photonics, wireline, and wireless applications. The session starts with a fully integrated silicon photonic transmitter, followed by an IQ modulator for coherent optical systems. The remaining papers are two sampling front-ends, a wireline transmitter, and a D-band phase shifter for phased array antennas.
Abstract
Rapid identification of object from RCS signals is important for traffic control, space and defense applications. The problem is typically solved using artificial neural networks. For accurate identification big data of monostatic/bistatic RCS is required. RCS data in a dense grid of directions should be collected for plane wave excitation incoming from numerous directions in a broad frequency range. Measurements cannot be used to collect sufficient data, and even for 3D EM simulation the task is challenging. WIPL-D will demonstrate a number of new options to acquire big data of RCS using examples of interest (birds, drones, vehicles, aircraft).
Abstract
This seminar covers the critical role that RF connectors fulfill and outlines the process of proper RF connector selection from the myriads of choices that are currently available. It will include an overview of the many defined standards and why so many exist. In addition, the key elements to consider during selection will be presented in a manner that serves as a template for an ideal connector selection process.
Abstract
Designing-in high frequency RF ICs requires special attention for proper chip to substrate transitions, including RF landing patterns, substrate/pad parasitics, and solder/wire-bond profiles:
•Designers often struggle to replicate the RF IC performance on another substrate or transition then recommended, as traditional s-parameter models fail to capture the critical chip-to-substrate transitions.
•Analog Devices, introduces a new unencrypted transition-based EM model approach, “Em-Plugs”, to the industry enabling precise performance predictions across varying substrates and transitions.
•This approach predicts the s-parameters performance accurately at high frequencies up to 90 GHz while eliminating the need for multiple PCB iterations, resulting faster design cycles.
Abstract
This workshop delves into the cutting-edge technologies shaping the future of 5G and beyond, with a focus on the practical implementation of FR2 OpenAirInterface (OAI) structures, ORAN functionalities, and advanced applications such as FlexRIC and MIMO. Featuring presentations from industry leaders like allbesmart, Emerson (Origin NI), TMYTEK, and academic insights from the University of Hawaii, the session offers a comprehensive exploration of the latest telecom innovations. Attendees will benefit from demonstrations and interactive discussions on future applications, gaining valuable insights into emerging trends and practical deployment strategies.
Abstract
The advancement towards 6G necessitates many innovations to transform vision into reality. Concurrently, the complexity and number of parameters requiring characterization are increasing, posing challenges in meeting commercial timelines. This workshop will address several ongoing trends that are enhancing our front-end devices. The presentations will provide valuable and comprehensive information on trends and measurement techniques for RFICs.
The topics include linearization techniques, GaN power amplifiers, pulsed measurements and the workshop will conclude with an interactive session exploring the anticipated impact of artificial intelligence (AI) on the characterization of these devices.
Abstract
This session introduces multiple state-of-the-art technologies for packaging and integration up to sub-THz frequency bands. Specifically the papers to be presented will cover novel low-loss shielded interconnects for D-band/sub-THz applications, 3D heterogeneous integrated RF glass-interposer system-in-package architectures, novel waveguide launcher in interposer package technologies for automotive imaging radars, highly scalable RF dielets embedded in glass interposer and thin film transmission lines on low-k polymer films.
Abstract
This session highlights recent innovations in acoustic wave technologies for next-generation communication systems. It covers the design of low-loss SAW filters with wide bandwidths for Wi-Fi 7, as well as frequency and bandwidth optimization of mm-wave thin-film lithium niobate acoustic filters. Additionally, the session introduces miniature, high-coupling resonators based on lithium niobate thin films operating in the 10–30GHz range. The final presentation focuses on a 36GHz periodically poled FBAR with a trilayer piezoelectric material structure, offering promising applications in high-performance frequency devices. These advances demonstrate significant potential for future wireless technologies.
Abstract
Different approaches for the design of advanced phase-shifting components with co-designed RF functionalities are presented, including quasi-circulator operation, bandpass filtering, and tunable attenuation. Implementations of these RF components in various technologies, such as planar, CMOS, and substrate integrated waveguide with liquid crystal are shown.
Abstract
This joint IMS/ARFTG session addresses today's measurement needs and challenges brought about by higher operating frequencies and instantaneous bandwidths. The presentations include traceability of coaxial standards through D-band, the use of frequency extenders in mm-wave load pull, as well as enhancements in receivers and local oscillators used in measurements.
Abstract
The session focusses on advanced compound semiconductor integrated circuits for broadband and phased array applications. The session will kick-off with an invited talk on the advances in mm-wave and THz amplifier technology and design. Advanced PA, DPD, linearization, and power combining techniques will be described as well as a highly-integrated 300GHz active phased array.
Abstract
This session presents novel receiver front-end designs, showcasing innovations in LNAs, phase shifters, and broadband receivers.
Abstract
The goals of heterogenous integration include higher speed, increased power efficiency, and smaller size. One large step towards achieving these goals is allowing high-frequency designers to co-simulate different technologies, process nodes, and/or media in a single RF-centric simulation and analysis environment. This MicroApp will introduce Cadence's new Virtuoso Studio RF platform highlighting the Virtuoso Design Link functionality to address this challenge. Designers can easily connect and integrate existing silicon and III/V designs in a single schematic for advanced RF and microwave simulation, including Method-of-Moments and Finite Element EM and thermal analysis.
Abstract
Error vector magnitude (EVM) is a key figure of merit for wireless systems. The cascaded noise and linearity of an RF signal chain can directly impact the system-level EVM performance. As a result, analyzing the EVM of an RF signal chain can provide valuable insights for optimizing system-level tradeoffs to achieve the desired performance outcomes. This presentation explores RF system-level design considerations, the relationship between system performance and EVM, the interpretation of the EVM "bathtub" curve for system optimization, and accessible tools that can be used for this analysis.
Abstract
This session highlights how RF engineers can leverage Tektronix Real-time spectrum analyzers (RSA) and SignalVu-PC software for synchronized, multi-channel RF data acquisition and analysis. Learn to connect multiple RSAs to a single PC, enabling simultaneous capture across multiple channels. Discover how this approach enhances the identification of signal interactions, interference analysis, and measurements of input/output devices like power amplifiers. Attendees will gain insights into real-time monitoring, multi-channel recording, and post-analysis workflows that reveal critical details in dynamic RF environments. Transform your spectrum analysis capabilities with unified, high-fidelity multi-channel RF capture.
Abstract
When a digitally modulated signal passes through an RF signal chain, its Error Vector Magnitude (EVM) is affected by noise, spurs and distortion. Since power management circuits generate noise and spurs, EVM can be a useful metric for assessing their quality. This Microapps talk will compare EVM results for QAM signals being amplified by RF amplifiers when those amplifiers are being powered by various power management circuits. We will focus in particular on the performance difference between LDO and Switcher based power management circuits.
Abstract
This MicroApp presents a model-based design workflow for the rapid development and prototyping of custom Orthogonal Frequency-Division Multiplexing (OFDM) modems using MATLAB, Simulink, and National Instruments (NI) USRP radios. The approach uses automated code generation from a behavioral model, and addresses challenges of efficiency and real-world applicability in wireless communication systems. By integrating simulation tools and over-the-air testing capabilities, the workflow significantly reduces the development cycle while maintaining traceability from the behavioral model to the deployed implementation. This workflow provides a seamless transition from theoretical design to practical implementation, offering insights into optimizing design and verification processes.
Abstract
RF technologies are evolving rapidly, with significant advancements such as miniaturization in Antenna in Package (AiP), enhanced QBIT fidelity for quantum computing, and deeper integration of THz technologies into AI and machine learning for network management, data processing, and decision-making. As these technologies progress from concept to fabrication to data centers, ensuring reliability at ultra-low temperatures, reducing costs, and improving power consumption and efficiency are crucial for successful market deployment. Wafer-level testing is becoming increasingly critical in achieving these goals. This keynote will explore the intersection of wafer-level testing and its essential role in advancing RF technologies for 6G, AI, and quantum computing.
Abstract
Differential designs are commonplace in the industry, for reasons including odd-order harmonic cancellation, good emissions performance, tolerance of process variance, and larger swing even on low-voltage processes. However, the factors which make tightly coupled differential designs attractive for the designer also make the acquisition of accurate S-parameter data challenging, due to incompatibility with the uncoupled representation assumed by conventional calibration algorithms. An approach to use the symmetry of the problem to ameliorate this has been proposed, and is now available in a commercial calibration package. This implementation is described, and the benefits arising from it discussed with real examples.
Abstract
The USRP SDR radios from National Instruments (NI) are not calibrated devices, and as such, they operate using relative power levels in dBFS. However, it is possible to manually calibrate the USRP and obtain absolute power levels in dBm. By enabling absolute power measurements in dBm, results can more easily be compared, interpreted, and leveraged for signal analysis and device testing. We will present the manual calibration process in detail and explain how to achieve precise and reliable signal measurements in dBm using USRP devices and associated software tools.
Abstract
In the recent past we have seen an increase in space platforms launched to supply the need for communications and earth observation satellites. This need is being driven by many factors, from the front lines of the Ukraine War to Earth-observation missions, and high-speed communication systems at home to name a few. LEO systems like Starlink offer full earth coverage and low latency in support of this increased need. Additionally, large GEO, High Throughput Satellites (HTS) with increased capacity are also being deployed. The difference in these orbital environments raises a question as to the best types of electronics to use. With LEO systems like Starlink, the need for low-cost parts has made us question how we develop these parts and what is really needed. While the GEO type satellites require higher performance. Subsequently, this has created a plethora of new companies to service this need. This has also increased the types of products needed for these applications. Above all this has made us question “Where is it all headed”?
Abstract
Modeling and simulation of antennas, arrays, and RF front-ends are crucial for successful wireless systems in communications and sensing. A top-down system-level approach, flexible in using full-wave EM models, behavioral models, and measured data, enhances RF system design. The goal is to make this approach accessible to engineers of all experience levels, enabling them to derive meaningful insights. This microapp showcases such a modeling paradigm. It features the use of an extensive component catalog for describing RF front-ends, with streamlined workflow for analysis and simulation, and enabling modeling options that weave in MATLAB-based scripting workflows into Simulink circuit-envelope based simulations.
Abstract
New RF buffers have noiseless delays that can achieve 0.5 ps steps and up to 50 ps range. With such delays one can tune out mismatches due to board imperfections, cable/connector mismatches, and other factors. Phase array radar systems
Abstract
Traditional oscilloscopes, while powerful, are often limited by identical settings across all channels, restricting their utility in advanced RF analysis. With the latest advancements, we have unlocked the potential of oscilloscopes to serve as wideband, multi-channel signal analyzers with truly independent configurations per channel, including center frequency, span, RBW, and time gating and almost every setting possible. This breakthrough allows users to analyze complex, multi-signal environments more effectively, enhancing diagnostic capabilities. Join us to explore this unique solution, its implementation, and the value it offers.
Abstract
Low pass filters are crucial for eliminating unwanted high-frequency signals in communication systems. Achieving enhanced far-band rejection while maintaining a compact design, however, remains a significant challenge. This presentation explores a practical tuning technique to enhance the far-band rejection capabilities of suspended substrate low pass filters. Despite the wideband nature of suspended substrate technology in general, achieving far-band rejection performance can be challenging due to the limitations inherent to transmission lines for wider frequency ranges. The tuning technique discussed aims to address these limitations, ultimately giving designers a practical option to extend far-band rejection performance in low pass filters.
Abstract
Satellite communication systems are rapidly moving towards higher frequencies and larger signal bandwidths for increased capacity. These trends impose tight requirements on transmitter linearity and power amplifiers efficiency. This workshop introduces an overview of state-of-the-art phased array architectures and how they can be combined with linearization schemes for enhanced efficiency. Advanced measurements and characterization techniques will be combined with behavioral models and prototypes for accelerating the design, optimization, and testing of linearization techniques and beamforming algorithms. We are using practical hardware to demonstrate how to tradeoff design parameters and improve ACLR, EVM, and other metrics for different standard waveforms.
Abstract
The global proliferation of smartphones has been significantly facilitated by improvements in CMOS technology at reduced feature sizes, leading to substantial gains in computational power.
A crucial aspect of this development is the RF Front End Modules, along with the associated circuits and technologies. This workshop course will focus on the current designs of 5G RF front-end modules employed in RF cellular technologies, addressing the challenges linked to 5G implementation and its anticipated evolution towards 6G. Participants can expect an in-depth exploration of practical 5G RF deployment, the technologies involved, and the latest innovations in next-generation mobile applications.
Abstract
This session reports the latest advances in 3D-printing and additive manufacturing of microwave and mm-wave filters, attenuators, interconnects, and transmitters.
Abstract
This session discusses deep-levels and high field-effects in GaN devices including HEMTs and IMPATT diodes. Additional topics include performance implications of gate insulator and metallization design. The session concludes with the characterization of substrates down to cryogenic temperatures.
Abstract
This session presents the latest advances in reconfigurable filtering devices. The reconfigurable devices include a multi-throw filtering switch, tunable filters, and an electrical balance duplexer for simultaneous transmit and receive architectures. The tunable filters include a dual-band coaxial filter and a tunable filter using Yttrium Iron Garnet to achieve 8–32GHz frequency tuning.
Abstract
Higher frequencies, higher levels of integration and new measurement environments, including cryogenic, are driving changes to on-wafer measurement procedures and equipment. In this joint IMS/ARFTG session, we will review a number of new processes, techniques, and different equipment constructs to help meet these evolving requirements. Topics include on-wafer versions of comprehensive mm-wave mixer measurements, on-wafer power calibration techniques, multiport calibration methods, and ways of dealing with thermally extreme environments.
Abstract
This session explores advances in leveraging AI/ML for RF/mm-wave/sub-THz circuit design, modeling, and optimization. The papers demonstrate synthesis of complex electromagnetic structures, mm-wave PA design and array optimization using AI/ML methods.
Abstract
This session is focused on the latest developments in integrated low-noise amplifiers for wideband communication. The papers in the session cover the frequency range from C-Band to D-Band. Furthermore, novel circuit techniques are reported to achieve low-noise performance and low power dissipation.
Abstract
LTCC filters have traditionally delivered around 30 dB of stopband rejection. Mini-Circuits has innovated LTCC technology to produce filter designs with rejection up to 90 dB and beyond. These high-rejection designs require a launch from a stripline PCB to achieve their full rejection performance but may be adapted for other types of substrates. This presentation introduces an interposer board that allows universal adaptation of high-rejection LTCC filters for mounting onto microstrip and coplanar waveguide traces. Implementations on various substrates are presented and their performance compared with the stripline use case, demonstrating significant performance benefits compared to other filter technologies.
Abstract
Hardware development, critical to advancements in wireless RF and microwave technology, faces unique challenges in securing investment due to high initial costs, complex development cycles, and extended time-to-return. A select group of Silicon Valley venture capitalists are defying the norm, betting on the transformative potential of these fields. This panel brings together leading investors who are actively funding hardware startups, with a focus on wireless systems, RF technologies, and next-generation connectivity. Moderated by David Witkowski, Founder & CEO of Oku Solutions, the panel discussion will explore why these VCs are drawn to hardware despite the risks, what they look for in a startup, and how their investments are shaping the future of wireless innovation. Attendees will gain insights into emerging trends, funding strategies, and the intersection of venture capital and technical breakthroughs, offering a rare glimpse into the financial engines driving tomorrow’s wireless ecosystem.