Workshops
-
The pursuit of ubiquitous connectivity and the rapid evolution of wireless communication technologies such as 5G and mm-wave have spurred a growing demand for RF front-end design that can operate across a wide frequency spectrum for various communication standards. However, achieving highly reconfigurable transceivers for multiple communication standards and frequencies presents a series of challenges. Accommodating various frequency bands necessitates multiple bulky filters in both transmitter and receiver, leading to increased form factor, cost, and insertion loss. High-speed communications typically with high peak-to-average power ratios (PAPR) require more power backoff in power amplifier (PA) for good linearity while compromising transmitter efficiency. Moreover, ultra-high-speed communications such as 5G mm-wave call for ultra-low-jitter local oscillator (LO) and clock generation with fine frequency resolutions. This workshop focuses on addressing these challenges through the approaches of RF/analog/digital hybrid design techniques. Critical circuit topologies including RF digital-to-analog converter (RFDAC), digital power amplifier (DPA), N-path filter/mixer, magnet-free circulator, and fractional-N sub-sampling all-digital phase-locked loop (ADPLL) are presented. The audiences are invited to explore the integration of these techniques to achieve unified transceiver architectures with exceptional reconfigurability. Five prominent speakers from leading institutes and companies will present their latest works and share insights on the development of advanced RF front-end design. Two speakers will delve into the design of RFDACs and DPAs in high-efficiency transmitters. Afterwards, another two speakers will discuss N-path filters and mixers, as well as magnet-free circulators, for high-selectivity receivers and full-duplex transceivers. Finally, the fifth speaker will guide our attentions to the LO and clock generation, by presenting the design of ultra-low-jitter fractional-N all-digital sampling phase-locked loops. The workshop serves as a collaborative platform, bringing together experts from academia and industry to discuss and envision the future of highly reconfigurable transceiver IC design. Through the presentations and the panel discussion session, attendees will gain valuable insights into the cutting-edge techniques driving the development of RFIC design.
The 6G Telecom generation forecasts mm-wave and sub-THz applications as Fronthaul and Backhaul mm-wave and sub-THz wireless links; Reflective Intelligent Surface between mini-cell station and devices mainly in mm-wave frequency range; Short distance ultra-high data-rate mm-wave and sub-THz wireless data storage transfer; Automotive Joint communication and Sensing Radars; Health and Industrial mm-wave and sub-THz Radars and imagers; and other applications which are not yet defined. A Key challenge facing us is how to manage multi-processes dies with antennas integrated in the same object, reducing losses, and then increasing power efficiency and, at the same time targeting the cost efficiency. The workshop will discuss the trade-off Power Efficiency/Cost Efficiency of different 3D assembly strategies and will try to have a picture of the most promising research in the domain, through topics which will address as III-V GaN/Si and InP/Si, with SiGe and or CMOS Heterogeneous Integration; Wafer to Wafer; Die to Wafer, Backend of line co-integration; mm-wave sub-THz packaging, including Antenna integration, Si-Interposers, organic interposers, and other packaging 3D approach. The power efficiency can be defined as the max data rate ability, with the max distance covered by the transceiver over its power consumption, the cost efficiency is max data rate ability, with the max distance covered by the transceiver over its cost. This simple relation does not take into account the cooling equipment, if necessary, the reliability, and finally the environmental impact of the different strategies. These last points are difficult to quantify at the research level.
Emerging applications such as satellite-based internet, quantum computing, high-temperature sensors and communications systems, and massive Internet-of-Things (IoT) wireless networks are enabling disruptive advances in computational ability, global internet coverage, device-to-device communications, and industrial and military sensing abilities. However, all of these extreme environments require integrated circuits to operate well beyond environmental ranges and operating voltages provided by the standard Process Development Kits (PDK) and require a combination of design skills traditionally held in non-overlapping design communities. This workshop will bring together these design communities through experts from academia and industry to provide attendees with a holistic view on overcoming these challenges. Starting near zero Kelvin, the first talk will give an overview of circuit design at cryogenic temperatures including effects on devices, matching, and how to overcome these effects. Taking it hotter, the next talk will cover device effects operating well above 150C and ongoing research to enable high yield systems at these temperatures. Making the workshop RAD, the third talk will give an overview of radiation effects on CMOS circuits and ways to design RF and analog circuits to overcome these effects. Taking it out of this world, the fourth talk will cover challenges of both radiation and temperature effects found in space-based applications and design techniques to overcome these challenges. The final talk will cover dense wireless environments with high-power RF blockers pushing the limits of the supported process supply voltage and RFIC design techniques to filter and operate through this interference. To end the workshop, we will bring the experts together for cross-pollination of ideas through a panel interaction with attendees. Can this panel create a space radiation hardened, any temperature-stable, high-power handling device? … Come and find out!
The evolution of 5G and the need for increased capacity drive new transmitter requirements. Broadband and multiband operation requires the Power Amplifiers (PAs) to support a wider operating frequency range and high data rate require large instantaneous bandwidths, further extended by carrier aggregation, while delivering high power and maintaining high efficiency. Additionally, modern systems require complex modulation schemes exhibiting high Peak-to-Average-Power Ratio (PAPR) of more than 10dB. When operating at high Output-BackOff (OBO), Drain and Power Added Efficiency (DE and PAE) of traditional PA is typically low, with the majority of power dissipated in heat! New efficiency enhancement architectures and design techniques, from Waveform Engineering, to Load Modulation (Doherty, Outphasing and LMBA) and Supply Modulation (Envelope Tracking), have been explored in recent years. The desire for the widest possible operational bandwidth (operating frequency range) to reduce system complexity and cost is driving new broadband design techniques exploring broadband combining and broadband matching. This workshop will introduce recent trends in PA architectures, PA design and broadband matching techniques addressing the three major challenges listed above, ie wide operating bandwidth, wide instantaneous bandwidth, and large PAPR. We will look at design trade-offs to improve and maintain efficiency while satisfying system requirements which include ACLR, EVM, and other metrics for 5G New Radio (5GNR) waveforms. The concept of linearization and Digital Predistortion (DPD) will be introduced in the context of evaluating the PA performance with respect to system requirements. Experts from industry and academia that are at the frontline of these developments are invited to address these issues and inform the audience about the latest advances in this field.
-
The growing field of quantum computing relies on a broad range of microwave technologies and has spurred development of microwave devices and methods in new operating regimes. But despite the significant progress made in the last decade in the science, engineering and characterization of quantum computation systems, several challenges remain to be overcome before quantum computation can become practically usable. One of the most promising quantum computing technologies is the superconducting quantum computing platform, which relies on microwave waveforms and devices to control and readout quantum bits, typically at cryogenic temperatures of tens of milli-kelvin. The advancement of quantum computing implies an increase in number of qubits within or across quantum processors leading to a significant increase in microwave cabling and components operating at such cryogenic temperatures to operate the quantum processors. This puts stringent requirements on heat-load, space, and signal integrity under these extreme temperatures. The challenges of realizing such practical large-scale quantum computing systems present microwave engineers and metrologists with opportunities in cryogenic microwave modeling, design, measurement, and characterization of cryogenic semiconductor and superconductor components, circuits, systems, and networks. This workshop reviews the existing microwave measurement and engineering challenges in realizing a practical quantum computer and addresses some of these challenges. The workshop includes talks from end-users, instrument and equipment manufacturers, academia, and national measurement labs from around the world.
This workshop gathers together world experts, research and industry leaders to report and discuss the latest RF/MW technology developments that continue to drive innovation in high-power applications in Aerospace & Defense, as well as in ISM. Specific areas of interest discussed in this workshop span from vacuum tubes (VEDs) to solid-state transistors for active devices, to circuit design and techniques, as well as specific applications that leverage the benefits of the evolving technology. This full-day workshop is geared towards practitioners in the high-power RF/MW aerospace, defense, industry, scientific and medical areas who want to gain a broader perspective on the latest technology developments as well as nuances specific to each different application. Novices and newcomers to the A&D and ISM industry will also gain a comprehensive exposure and understanding of the RF/MW landscape that drives innovation in this specific arena.
Recently, new research projects toward Space Based Solar Power (SBSP) and related beam Wireless Power Technology (WPT) are born simultaneously in the world. The SBSP was originally called a Solar Power Satellite (SPS) and it was proposed in 1968. The SBSP is a future power station in geostationary satellite orbit and the electricity generated in space is transmitted wirelessly via microwave beam to the ground. In the past 50 years, research and development projects toward the SBSP were carried out several times in US, in Japan, and in Europe. In each R&D project, new SBSPs were designed with the latest technology at the time. What is different now is that the industrial revolution is happening in parallel. For example the commercial WPT (both coupled WPT and far-field WPT) market has started in the past 10 years. Revolutionary start-up companies for space applications are developing. Based on changes in the business market, new R&D projects toward the SBSP have now started in US, in Japan, in Europe, in China, and in other countries. In this workshop, we focus on the new technologies and new R&D projects of the SBSP and related beam WPT R&Ds. The requirements of the beam WPT for the SBSP are accurate beam forming with a huge phased array, high-efficiency microwave transmitter/generators, novel high-efficiency devices, high-efficiency rectifiers with diodes, harmonization between the WPT beam and conventional wireless systems, and suppression of interference between the WPT beam and space plasma/atmosphere, etc. ITU-R (International Telecommunication Union Radiocommunication Sector) recommends frequencies suitable for commercial WPT, especially weak-powered wide-beam WPT in 2022. The Japanese government established new radio regulation of the weak-powered wide-beam WPT in 2022. Radio regulations are under discussion for beam WPT suitable not only for the SBSP but also for WPT aided drone, etc, which is the expected 2nd step of commercial WPT in the world. The WPT technologies introduced in this session are widely applicable both to the SBSP and to 2nd step commercial WPT.
With ever-increasing advances in the fields of the modern wireless technologies (eg 6G and radar systems), the design of compact and multi-functional transceivers to meet the stringent requirements demanded by such systems remains a great challenge. In this context, multi-functional RF integrated passive components (IPCs) are considered key building circuits for their development. These components are based on novel miniaturized structures and specific technologies that can be utilized for the implementation of RF, microwave, mm-wave, and THz wireless systems. This unique workshop focuses, for the first time, on the area of IPCs and their applications in the context of 6G wireless and radar scenarios by reporting recent research findings in this exciting field. This includes current progress in miniaturized RF passive components enabling multi-functional and adaptive radios from the aspects of thin-films integration (eg ferroelectric and ferromagnetic thin films), on-chip tuning techniques (eg diodes and transistors) and novel THz (eg f-band, D-band, etc) passive components with application in active circuits will be presented. Furthermore, state-of-the-art transmission line synthesis and development will be presented. In particular, the technique of mode diversity and mode composition will be explained and discussed with a number of examples, including an emerging concept of mode selectivity. Theoretical and experimental results will be presented in an effort to explore structural integration, physical agility, multifunctional operation, and performance enhancement of integrated transmission lines. In addition, multi-functional on-chip reflectionless components (eg CMOS and SiGe passives) and integrated antenna sub-system, along with hybrid acoustic-wave lumped-element microwave resonator technologies for the realization of advanced compact microwave filtering devices are described. Finally, the latest advances in the area of RF to THz passive micro-systems for multi-functional applications in 6G, radar system, and beyond, will also be presented.
Algorithms and processing pipelines based on Artificial-Intelligence (AI) and Machine-Learning (ML) techniques are on a solid trajectory to become an integral part of the next generation of wireless systems. While the exploration of AI/ML to RF applications started decades ago, their development has accelerated recently with the increasing availability of advanced AI knowledge, high-capacity compute infrastructure, and wireless testbeds for generation and training data sets. Nevertheless, the development of AI-enhanced wireless systems remains a challenging multi-disciplinary task, where EM, RF, IC design, signal processing, and ML expertise are all equally important. Emerging 6G wireless communications systems and mm-wave radar applications call for accelerated developments in this area. In particular, power consumption and latency requirements may require the implementation of optimized feature extraction methods in mixed-signal ICs closer to the antennas. The goal of this workshop is to bring together a set of active researchers to share their vision and expertise on these topics in order to bring a cross-disciplinary awareness and understanding among RFIC, AI, and systems communities. The speakers span academic and industrial research institutions from across the globe and the presentations will cover both wireless communications and radar.
As the Moore’s law is coming to an end, separating large systems into smaller chips based on their functionality is not only a cost-benefit solution but it allows the complex system to expand beyond theoretical size limits. Although chiplet technology has been around for many years, it has not been till the rise of the AI supercomputers and the accompanied unprecedented computational demand that put the spotlight on SiPs (System in Package). There are different aspects to the design of chiplets including the packaging, the high-speed chip-to-chip interconnect and the interoperability and standardization which allow the SiP built by the combination of chips from different vendors. There are multiple benefits to the chiplet-based architectures. Breaking down the large complex systems into smaller chips based on their functionality means better yields and lower cost due to the lower probability of manufacturing defects. Cost reduction can also come with customizing the process technology for each chiplet (eg using advanced nodes for GPUs and CPUs and less expensive technologies for memories and analog interfaces). Design upgrades can also be done on certain functional blocks without the need for redesigning the whole system. To take full advantage of chiplet-based architectures, the D2D (die-to-die) interface needs to be standardized. The interoperability allows the developer to use multiple vendors. In terms of the packaging, development of 3DHI (3D Heterogeneous Integration) that enables stacking up separately manufactured components, is the perfect technology choice for chiplet-based architectures. Additionally, the ever-increasing demand for high-throughput communication links and high-resolution radar sensors is driving the development of future wireless systems at higher operating frequencies. In order to support multiple functionality, the flexibility requested to those systems, is driving the adoption of large phased array antennas. Heterogeneous technologies and vertical 3D integration will play a vital role in enhancing the performance and functional density, along with reducing the size and costs, of such RF systems. In addition to the already mentioned standardization, both on the digital and RF side, 3DHI will pose a new set of technology (processes and substrates), design (MMICS, RFIC, analog, power management, passives), packaging and thermal challenges. This workshop will address some of the challenges mentioned above both from the digital and RF point of view, combining commercial and defense perspectives with state-of-the-art research in the field. Experts from industry and academia that are at the frontline of these developments are invited to address these issues and inform the audience about the latest advances in this field.
Large-scale quantum computers promise to enable the solution to certain classes of problems for which no other efficient approaches are currently available. The realization of such a computer is hence a major open challenge that is being aggressively researched by academic and industrial teams across the globe. There are several types of competing qubit realizations, each offering different advantages. Yet, all of these realizations require some form of cryogenic cooling and most require RF electronics for control and potentially for readout (in several realizations the readout is optical). Moreover, integrating the control and/or readout electronics at an intermediate temperature stage within the cryostat is an attractive option. However, the circuits still need to fulfill stringent requirements on power consumption, spectral purity, noise budget etc, making their optimization challenging. As such, there is a growing opportunity for the RFIC community to influence this emerging field. In this full-day workshop the state-of-the-art in cryogenic RF circuits for various types of qubit realizations is reviewed. System considerations for various qubit modalities will be discussed, leading to the circuit-level specifications that drive the architectural considerations associated with control ICs targeting different qubit types. The talks will present different RF circuit design solutions for various types of qubits including silicon spin qubits, superconducting qubits, and trapped-ion qubits. The workshop features distinguished speakers from leading companies and academia, who will present their latest advances on cryogenic circuits for quantum computer applications. A brief concluding discussion will round-off the workshop to summarize the key learnings on the wide range of aspects presented during the day.
The rapid increase in data throughput in recent 5G (FR1 and FR2), Wi-Fi (6E and 7), and 6G (FR3 in the near future) requires high-efficiency, linear and wideband RF power amplifiers. However, it is extremely challenging to simultaneously enhance the linearity and efficiency of the power amplifier, especially for spectrally-efficient and wide modulation bandwidths (eg 320MHz for Wi-Fi 7, 100MHz for 5G FR1, and >400MHz for FR2). Higher order constellations like 4k-QAM for Wi-Fi 7, 256-QAM for FR2 make PA design a challenging task. This workshop will cover the “practical” and “most promising” linearity and efficiency improvement techniques for RF power amplifiers and transmitters. Several techniques like wideband envelope tracking, Doherty power amplifiers, digital transmitters, mm-wave power amplifiers etc, will be covered in a tutorial type fashion, with emphasis on practical aspects of the design.
With technological advancement, the spectrum of possibilities within the realms of communication and sensing is expanding astonishingly. One of the most exciting frontiers in this domain is the utilization of mm-wave and sub-THz frequencies, offering a gateway to revolutionary advances in wireless communication and sensing. The workshop collects the transformative capabilities of mm-Wave and Sub-THz technologies, which collectively span the frequency range from 30GHz to 300GHz. This previously underutilized spectrum is now at the forefront of technological breakthroughs. At the heart of this paradigm shift lies the broadband front-end, a critical component that enables the seamless harnessing of mm-Wave and Sub-THz frequencies for applications that were once considered futuristic. One of the central themes of the workshop is the advancement of high-frequency communication technologies. Explore the latest developments in ultra-fast data transfer, low-latency networks, and the mm-wave and Sub-THz spectrum integration in wireless systems. Witness how these innovations reshape the connectivity landscape, enabling applications like 6G, autonomous vehicles, smart cities, etc. The workshop takes participants on a journey through the diverse applications of mm-wave and Sub-THz sensing, from radar systems that can revolutionize wireless communication to high-resolution imaging techniques that can potentially transform human life.
The reliance on digital beamforming and large arrays in mm-wave is increasing as communication and sensing systems migrate to higher frequency bands and occupy wider bandwidths. In this workshop experts in communications, automotive radar/sensing, antennas and silicon and packaging technologies will share their related experience and vision and discuss various challenges and solutions at the system, circuit, and technology levels.
Sensing modalities are enabling technologies for the ongoing revolution in autonomy. This is evident from the global sensor market that was valued at B in 2019 and is projected to reach over B by 2028. Camera, LiDAR, and RADAR dominate the autonomy field, and IR/thermal is now emerging as an important modality in that space. However, today none of the sensing modalities alone can solve the abundant challenges needed for robust, reliable, and trust-worthy autonomy in difficult environments. To that end, this workshop brings together a unique mix of top industry, academic, and regulatory body speakers to discuss these challenges, the current solutions, and what we can expect today’s research to bring for tomorrow. The speakers bring a breadth of expertise and experiences ranging from electronics to photonics, integrated systems to sensor fusion, and OEMs to regulators; this insight comes together in a workshop-concluding panel discussion that dives deep into key forces pushing us towards — and holding us back from — autonomy.
-
Advanced CMOS technologies enable direct bits-to-RF conversion, which provides higher energy-efficiency and more compact die area, especially for sub-7GHz. Meanwhile, such digital intensive transmitters, with highly reconfigurable nature are well adapted for multifunction and intelligent communication systems. When the operation bands extend to mm-wave to meet the increasing data streaming requirements of modern communication systems (eg 5G, 6G, etc), digital intensive transmitters also exhibit potential advantages compared to traditional Cartesian transmitters. This workshop discusses techniques of digital intensive transmitters operating from sub-7GHz to mm-wave with continuous evolution of higher output power, efficiency, data-rate, and multi-functions such as distortion self-calibration, multi-band, multi-mode, etc.
Are you a student or a professional researcher seeking insights into the process of productizing ideas? Perhaps you are an experienced designer keen on understanding how fellow professionals have surmounted challenges during product development. If so, this workshop is tailored for you! Industry experts representing high-volume commercial integrated circuit (IC) companies, IP developers, aerospace, and defense sectors will share their experiences of navigating the journey from conceptualization to fielded product. Engaging discussions will encompass a diverse array of topics, spanning high-speed analog to digital converters, digital to analog converters, mm-wave packaging, multi-antenna beam steering calibration, RF front-ends and the benefits of RF/packaging co-simulation. During the developmental phase of prototypes, constraints related to budgets and schedules often hinder thorough validation, verification, and testing procedures. Consequently, this limitation can lead to the emergence of latent defects that remain undetected until later stages of productization. In these scenarios, research teams and start-ups may be primarily focused on core innovations and transformative concepts, only to encounter obstacles when the company aims to expedite the implementation of these ideas. For instance, in startup environments lacking dedicated facilities for environmental testing, issues like low-temperature oscillations (which are unobservable during simulations) may go unnoticed until far too late. The instances discussed within this workshop serve as valuable examples that can form the basis of a comprehensive checklist, enabling a smoother transition from the prototype phase to the final product. We hope this workshop could potentially prevent the need for extensive reiterations, saving both time and resources for you and your colleagues.
With global networking data traffic predicted to reach petabytes in the next few years, mm-wave wireless communications enabled by silicon-based phased arrays is poised as a game-changer for new infrastructure applications. Emergence of untethered space constellations such as low-earth orbit (LEO) satellite communications approximately lying between 500km to 800km altitude such as Amazon Kuiper (590–630km), SpaceX Starlink (550–750km), OneWeb (1200km), and Telesat Lightspeed (1015–1325km) will further benefit global connectivity. By utilizing the fallow spectrum at mm-wave, it is expected to provide gigabits-per-second data rates to multiple users including under-served and remote areas. While planar mm-Wave phased arrays have cemented their position in communication systems, the future of satellite constellation hosting thousands of antenna elements is dependent on the choice of frequency, application, field-of-view, and form factor. Conformal phased arrays, which encompass mechanically flexible, foldable, or stretchable arrays, are one of the promising new frontiers of array development. Conformal antennas provides multiple degrees of freedom to the scan angle that is typically limited by antenna aperture. Recent works have demonstrated new viable research directions at the antenna-RF interface with the adaptive control that will be presented in this workshop.
-
High-voltage, linear RF switches are extensively demanded in a wide variety of applications, ranging from high-volume, cost-efficient cellular handsets to performance-centric and high-reliability automated test and measurements, RF infrastructure, military, and medical systems. Antenna tuning techniques utilized in modern cellular mobile devices have been the main driver for rapid improvement of commercial solid-state CMOS-based high-voltage switches. A need for more radical RF performance improvement in other demanding applications calls for innovative solutions based on RF-MEMS and disruptive PCM switch technologies. In this workshop experts from industry and academia will report on recent advances in MOSFET-based, RF-MEMS and PCM-switches for RF communication and test platforms. A panel session will conclude the event, where the speakers will debate on the insights and outlooks for the trending technology candidates for switchable RF devices in cellular RF front-ends, automated test and measurement systems, industrial/military radios and others.
The realization of advanced front-end modules (FEM) for mobile applications, whether below 6GHz and definitely at mm-wave, and their packaging, pose daunting design challenges to fit significant electrical functionality within a relatively small space while meeting or exceeding electrical, mechanical, thermal, and reliability requirements for both the UE and BS use-cases at a low cost. As a result, it will be more important to solve signal integrity, reduce insertion losses imposed by various interconnects and packaging techniques at the chip, module, and board levels with co-engineering across disciplines, and realize an integrated module cost-effectively. This workshop is organized to address current and future design and manufacturing techniques by bringing together subject-matter experts from the IEEE Electronic Packaging Society (EPS) and the MTT-S communities. Presentations will cover the state-of-the-art in advanced, cost-effective multichip module integration, integrated passive devices (IPD) and interposer technologies for circuit and system design for signal diversity, and beam-forming approaches that would leverage emerging next-generation wireless communications, including handset modules, economically. In particular, the workshop will highlight the latest advances and state-of-the-art developments in interposer technologies, including high-resistive Si, glass, and organic substrates for 2.5D/3D IC integration through vias (TSV/TGV), high-Q IPDs, antennas in packages (AiP), and wafer-scale packaging, covering sub-6GHz 5G to 300GHz 6G applications. The workshop will discuss the relative merits and de-merits of existing approaches in terms of losses, Q, isolation, non-linearity, and, most importantly, cost, and it will provide possible solutions with future directions. This will present advanced HR Si (with buffer, passivation, and isolation layers) and glass-based high-Q IPDs integrating filters, matching networks, and integration of antennas optimizing radiation pattern and system performance; RF-optimized silicon interposer developed with TSV and IPDs for above 100GHz applications with particular focus on antenna, CMOS, III-V integration, and thermal management of highly scaled solutions. Further, it will present recent progress in using glass as a material for MMIC packages in the D-band, using the organic chip carrier glass IPD process to design antennas-in-package, and including the design of transmission lines, flip-chip transitions, and antenna arrays for realizing cost-effective integrated modules in the 150GHz and 300GHz bands. The speakers are the experts and are the leading contributors in both the industrial and academic sectors.
The system performance of wireless transmitters depends heavily on the behavior of RF power amplifiers (PA). To satisfy the increasing demand for higher data rates, modern communications standards adopt ever higher modulation orders at increasing modulation bandwidths. Additionally, radar systems are facing increasingly more complex signals while dual functionality remains a desired goal for future systems. As a result, PA designers are faced with the intractable goal of providing PAs with simultaneously high linearity and power at higher carrier frequencies with wide instantaneous bandwidths in a world where power conservation is often a primary objective. Traditional PA design starts typically from (pulsed) continuous waveform (CW) measurements combined with load-pull. Design techniques, like the Cripps method, come to the rescue of the designer to reduce the amount of characterization. Usually, the PA is characterized under the desired modulation conditions only after the design and fabrication, often with degraded performance from the predictions. This requires then one or more expensive redesigns. With the increased demand for active phased arrays, this problem is only magnified as amplifiers interact with each other through the antenna coupling, which affects both efficiency and linearity. This workshop showcases the state-of-the-art of practical design methodologies that anticipate the use of the amplifiers under realistic wideband modulation conditions. The goal of these methodologies is to reduce the number of fabrication iterations by characterizing the transistor and designing the PA in a realistic operating environment at an early stage of the design process.
In this workshop, we will deeply explore high-frequency technologies, emphasizing the synergy between chipletization, heterogeneous integration, and advanced interconnect solutions for mm-wave and sub-THz applications. We will explore the need for innovative approaches to heterogeneous integration (HI), which involves integrating multiple dies and chiplets (eg CMOS, InP, and SiGe BiCMOS chips) on advanced packaging, to push the boundaries of high-frequency systems into new territories. The workshop will include insightful presentations from both academia and industry, highlighting the latest trends and future technologies in chipletization, HI, and advanced packaging. These talks will merge theoretical research with practical applications, offering a comprehensive view of the field’s progression. Additionally, we will discuss the necessity for cutting-edge interconnects and transitions, essential for ultra-broadband, low-loss signal transmission in the high-frequency domains. Through discussions and case studies, we will show how these technologies are crucial for the practical realization of chiplet and HI-based mm-wave and THz systems.
Large-scale distributed or cell-free MIMO is the next step of the wireless evolution beyond 5G and massive MIMO. The main idea is to utilize a very large number of distributed, low-cost and low-power access points to form a network where the service is user-centric rather than divided into cells as done in conventional wireless networks. With the access points and antenna elements spread out spatially, the network can provide a more ubiquitous service in terms of coverage and throughput, but several challenges come along compared to conventional co-located MIMO. As coherent operation is needed to manage interference, aspects such as front/back-haul and RF synchronization requires novel schemes that scales well with distributed antenna systems. Keeping the access points simple and cost effective also implies challenges on RF front-end design and signal processing algorithms commonly used in co-located antenna arrays. In this workshop, we present some of the recent advances in research on RF and microwave technology aimed to address the challenges of a truly distributed and cell-free network.
-
The complexity of the requirements in advanced 5G and forthcoming scenarios has a direct impact on the design of acoustic wave filters. Latest developments have pushed acoustic technology to an unprecedented situation mostly due to the developments in advanced functional materials; however, this entails at the same time, new challenges in relation to design and synthesis methodologies, electrical characterization and non-linear behavior and modeling. New scenarios open at the same time an opportunity window where new applications can be faced using acoustic wave technologies due to the outstanding performance and reduced size compared with conventional electromagnetic solutions. The workshop is divided in three differentiated blocks. The first block is focused on design and synthesis methodologies. The objective is to show how the amazing properties of new functional materials may help to overcome existing limitations, mainly related to the achievable bandwidth of the filter. In the second block, the focus is put on modeling and linear/non-linear characterization. New functional materials may require new modes of operation of AW resonators, and higher power handling, which may contribute to a higher non-linear behavior. All this phenomenological behavior can be used for the development of more precise linear and non-linear models. The third block is focused on new modes of operation and AW resonator configurations taking advantage of new material properties such as heterostructures, new doped materials, or other configurations as the periodically polarized piezoelectric P3F. The final block is focused on transversal markets to explore new opportunities where acoustic wave technologies may have a key role in future scenarios (UWB, Sensors, and/or other applications). With the objective of giving the widest view on the topic, the half of the presentations are given by international recognized research groups in academia, while the other half are given by the major global industrial players.
This workshop will discuss radio spectrum usage from the view of a microwave practitioner. The basics of wireless spectrum allocation and regulation will be discussed. Presentations will describe the spectrum needs and challenges for defense and the commercial wireless industry, as well as how the test and measurement industry will be challenged. Core microwave technology innovations enabling future innovative spectrum usage will be discussed, including mm-wave devices and reconfigurable circuitry. Finally, a discussion of workforce development for spectrum science and engineering will conclude the presentations. The workshop will include an opening discussion and audience poll for topics of interest, as well as a closing panel session with the speakers for additional participant interaction.
Microelectronics operating in the mm-wave frequency regime have gained considerable attention for numerous applications including beyond-5G communications, satellite communications, and G-band radar for humidity and cloud remote sensing. A central component in the mm-wave integrated circuit development is precise on-wafer characterization of the next-generation transistors for device characterization and model extraction/validation. On-wafer measurements at mm-wave frequencies pose considerable challenges, and these difficulties are compounded when large-signal measurements are required for device optimization and modeling. This workshop incorporates a diverse set of speakers from around the world who are international experts in the field of on-wafer mm-wave calibration and small- and large-signal measurements. The morning session of this workshop will provide a deep background on the need for, challenges of, and calibration requirements for on-wafer mm-wave large-signal measurements. Our afternoon session will present world-class research from both academia and industry on on-wafer load-pull measurements at mm-wave frequencies. This proposed workshop will enable an inclusive, international audience and will welcome open discussions on the technical aspects of the presentations.
Ultra-low-power devices which are pervasive in the IoT world depend on energy autonomy to perform seamlessly their sensing and communication tasks. The wireless provision of power is an appropriate solution for IoT sensors, as demonstrated by the talks of this workshop, given by experts from both academia and industry from all continents. The workshop focuses on different areas, such as the miniaturization of the IoT node, the exploitation of additive manufacturing for eco-friendly solutions, the need for circuital/electromagnetic strategies for accurate low-power transceiver design, system-on-chip solutions with machine-learning assisted sensing capabilities. Moreover, both near- and far-field applications (up to mm-Wave) are considered with special emphasis on complex electromagnetic environments, from the viewpoint of the receiver (rectenna) and the transmitter (energy source), with recent solutions of both single or multiple rectenna combinations and advanced transmitting stations. This workshop is part of the initiative “Future Directions Days on WPT” sponsored by the MTT-S Technical Committee-25 (Wireless Power Transfer and Energy Conversion Committee).
The recent demonstration of quantum supremacy with superconducting quantum computers has triggered researchers all over the world to work towards improved superconducting microwave devices, as well as novel quantum methods and algorithms. For low temperatures and weak microwave signals, as is the case in the readout of superconducting qubits, the quantum nature of the electromagnetic field becomes apparent. Hence, the design, optimization, and scaling of superconducting microwave components need to be performed on a completely new theoretical basis, given by the framework of circuit quantum electrodynamics. For microwave engineers, this signifies a transfer of knowledge from classical electromagnetics to the quantum realm. More or less common microwave components such as mixers, isolators, parametric amplifiers, and circulators are key for the realization of superconducting quantum computers. They can be modeled using quantum theory or hybrid semi-classical quantum approaches, which is particularly important if quantum effects are fundamental to the device’s operation. To exploit the full potential of general-purpose quantum computers based on superconducting qubits, which will enable breakthrough applications in the mid and long-term. Further technological advances in quantum error correction and qubit readout are necessary. Fueled by the remarkable progress in quantum hardware, which has defined a new noisy intermediate-scale quantum computing era, innovative quantum-based algorithms have been proposed. Particularly in electromagnetics, specialized quantum algorithms have the potential of significant speedups against classical computing strategies, especially when it comes to NP-hard optimization problems. Quantum algorithms also show great potential for the solution of integral equations, inverse scattering problems, and the prediction of radiation patterns. However, at the current stage, inevitable noise and limited qubit coherence times are prohibitive for most methods to show a real quantum advantage yet. Current topics in the modeling of RF microwave quantum devices based on circuit quantum electrodynamics will be addressed, which will be connected to the design and implementation of advanced quantum algorithms for general-purpose quantum computers and quantum annealers. One goal of this workshop is to bring together specialists in the modeling, design, and experimental realization of quantum hardware and experts in quantum algorithms with a focus on computational electromagnetics to discuss their individual ideas and perspectives on quantum computing. Another important aspect of this workshop is to introduce microwave engineers step-by-step to the strange new world of quantum theory by means of a comprehensive tutorial in the beginning, bridging the language barrier between quantum physics and RF microwave engineering.
-
The rising demand for high data traffic, speed, and resolution requires new-generation (5G and B5G) power amplifiers (PAs) to operate at higher frequency bands, and deliver high linear power with wide bandwidth and high efficiency at high PAPR, and these PAs are among the most critical components for the next-generation mobile and backhaul systems. Load-modulated Doherty power amplifiers (DPAs) are highly regarded as suitable candidates, providing high efficiency and supporting higher-order modulation. However, conventional DPA suffers from restricted bandwidth, maintaining efficiency with BW, and increased sensitivity to load mismatch. This timely workshop will feature a wide range of presentations highlighting the recent advances and state-of-the-art developments in Doherty-based PA circuit design theory, methodology, and practical circuit and system implementation techniques for overcoming the above constraints. This will cover analog and hybrid beamforming and massive MIMO applications for sub-6GHz 5G to mm-wave and 6G applications, including those for handsets and infrastructures. This workshop will showcase advanced topologies, including a novel active load-modulated PA architecture called the circulator load-modulated amplifier; advanced sequential version and the voltage-combining approach; and novel analog/digital co-design, reducing undesirable memory effects and extending bandwidths with high efficiency. Further, the latest load-insensitive load-modulation PAs including quasi-balanced Doherty PA and load-modulated balanced and double balanced amplifiers, which provide inherent isolation from the antenna, will be presented. Finally, the workshop will conclude with the latest important trends, possible future directions, and experimental results based on monolithic and hybrid implementation and will compare the performance of novel DPAs with circuit/device technologies in terms of BW, ACLR/linearity, and efficiency at different backoffs (6 to 12dB) for fulfilling the challenging high-performance and low-cost requirements of next-generation wireless communications.
This interactive half-day workshop of 4 tutorials includes 5 speakers from both industry and academia, who have been involved in the development of new approaches for the design and testing of power amplifiers, phased arrays and antenna-in-package modules. The tutorials present techniques for evaluating and optimizing efficiency and heat dissipation in RF devices and front-ends, and are a combination of recent research, as well as field-proven methods that are already available in the industry products, such as thermoreflectance solutions and over-the-air (OTA) thermal imaging for 5G phased array front-ends incorporating ICs and antenna-in-package modules. In addition to the conventional Q&A time made available to attendees during and after each tutorial, attendees will be encouraged at the beginning of the workshop to present challenges that they are interested in addressing, so as to allow the tutorial speakers to consider these in their tutorials.
Understanding instrument noise and building stable, ultra-low-noise receivers have critical importance achieving high-quality accurate RF receivers that are used in a very broad field including 5G systems to weather/meteorological radars/sounders to communication systems. This workshop will fill an important gap by discussing noise parameter measurement techniques at room temperature and cryogenic environments, ultra-low-noise technologies and amplifiers in InGaAs mHEMTs and GaN HEMTs, low noise amplifiers and receivers for radiometric measurements and recent advanced state-of-the-art low-noise technology and their applications.
Over six decades of exploration of our solar system by robotic spacecraft has not only been one of the greatest adventures in history but has also transformed our understanding of the universe. Every mission has enabled stunning scientific discoveries that altered our knowledge of the universe. The breadth and depth of the discoveries from these robotic missions would not have been possible without the parallel development of broad range of science instruments that operate over wide range of wavelengths across the electromagnetic spectrum. These instruments provided the data to address key science questions and test scientific hypotheses. The focus of this workshop is the development of space-borne microwave and THz instruments for exploring our Earth and the numerous objects orbiting the Sun in our solar system such as the planets and moons. At present there are significant technological needs for improving existing instruments and adapting completely new concepts. Practically all instruments can benefit from technology developments that can reduce their mass and power consumption and improve data communications capability. Additionally, increased sensitivity and measurement accuracy are desired attributes along with survivability under extreme temperature/pressure in the ionizing radiation environment of space. Furthermore, autonomy is important given the enormous planetary distances that are involved. Accordingly, the workshop includes presentations from space agencies and organizations across the globe highlighting their instrument development successes and the missions that were enabled. The workshop commences with an overview talk that presents the state of THz instrumentation development, design, and implementation challenges. The second presentation will review the current and upcoming synthetic aperture radar (SAR) missions and their advanced exploitations to deliver actionable information for society in the context of climate change and green transition. In the third presentation, exemplary space-borne instruments such as a limb sounder operating in the microwave and THz spectral range for measuring the atmospheric composition will be discussed. The fourth presentation will highlight two recent projects that utilize Artificial-Intelligence (AI) and Machine-Learning (ML) and discuss successes and challenges experienced during development and provide additional insights into future pathways for AI and ML in spaceborne microwave instruments. The fifth presentation will describe a unique high ground-resolution SAR system on a novel quasi-two-dimensional satellite dubbed as the DiskSat for very low Earth orbit missions. Lastly, a THz heterodyne spectrometer with high sensitivity and resolution and with 2U form factor as a payload on a CubeSat for detecting the presence of hydroxyl and heavy water simultaneously in the Moon’s polar and equatorial regions will be presented.